
SAP HANA

SAP HANA™ for Next-Generation Business
Applications and Real-Time Analytics
Explore and Analyze Vast Quantities of Data from
Virtually Any Source at the Speed of Thought

Table of Contents

SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

4	R evolutionize the Way You Run Your Business

5	C urrent Generation of Enterprise Solutions

6	T echnological Transition

8	 SAP HANA Platform Overview
Taking a New Approach to Business Data Processing

10	T echnology Foundation
Execution Control

Calculation Models for SQLScript Table Functions

Parallel Execution

13	C olumnar and Row-Based Data Storage
Choosing Between Column and Row Store

Advantages of Columnar Tables

Temporal Tables

16	 SAP HANA Benefits for Business Applications

17	 Paradigm Shift in Approach to
Data Management Technologies
Find Out More

SAP has introduced a new class of solutions that
powers the next generation of business applica-
tions. The SAP HANA™ database is an in-memory
database that combines transactional data pro-
cessing, analytical data processing, and applica-
tion logic processing functionality in memory.
SAP HANA removes the limits of traditional data-
base architecture that have severely constrained
how business applications can be developed to
support real-time business.

In recent years we have observed interrelated technological
and social revolutions. Computer systems have a continuously
increasing number of processing cores with large integrated
caches. Main memory space has become practically unlimited
with the ability to hold all the business data of enterprises of
every size. With the exploding number of mobile devices, infor-
mation for decision making needs to be available in seconds.
Changes to the business, risks, and opportunities need to be
tracked in real time to keep the business competitive.

Leaning on long-term business experience and visionary
research, SAP has created a new paradigm of building business
applications that takes advantage of these advancements in
technology. The paradigm is realized in the SAP HANA plat-
form. SAP HANA enables you to perform real-time online appli-
cation processing (OLAP) analysis on an online transaction
processing (OLTP) data structure. As a result, you can address
today’s demand for real-time business insights by creating
business applications that previously were neither feasible nor
cost-effective.

SAP HANA introduces a different way of thinking from both the
technical side of how to construct applications and the busi-
ness side of how to exploit the new functionality. SAP offers an
incremental road map that enables your organization to safely
explore the technology today, seize opportunities in side-by-
side scenarios, and get prepared for the increasing rate of
doing business.

New Database Solutions That Remove the Limits of Traditional Database Architecture

SAP HANA enables you to perform real-time OLAP analysis
on an OLTP data structure. As a result, you can address
today’s demand for real-time business insights by creating
business applications that previously were neither feasible
nor cost-effective.

Revolutionize the Way You Run Your Business

5SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics 5

Separation of Data Management Solutions into Transactional and Analytical Processing

The architectures of current-generation business systems
reflect the technological conditions during the long evolution
of business solutions:

•• Database layer: Database management systems were
designed for optimizing performance on hardware with lim-
ited main memory and with the slow disk I/O as the main
bottleneck. The focus was on optimizing disk access, for
example, by minimizing the number of disk pages to be read
into main memory when processing a query.

•• Business application layer: Business software was built with
a sequential processing paradigm. Data tables for the cur-
rent scenario were fetched from the database, processed
on a row-by-row basis, and pushed back to the database.

As discussed by Plattner and Zeier in their recent book on
in-memory data management, technological database limita-
tions have forced a separation of the data management solu-
tion into transactional and analytical processing:

•• Online transaction processing (OLTP) systems are highly
normalized to data entry volume and to speed up inserts,
updates, and deletes. This high degree of normalization is a

disadvantage when it comes to retrieving data, as multiple
tables may have to be joined, which severely impacts
performance.

•• Online application processing (OLAP) systems were devel-
oped to address the requirements of large enterprises to
analyze their data in a timely manner. These systems exploit
specialized data structures designed to optimize read perfor-
mance and provide quick processing of complex analytical
data.

Data needs to be transferred out of an enterprise’s transac-
tional system into an analytical system and is then prepared
for predefined reports.1

Figure 1 illustrates a typical enterprise software situation in
current-generation solutions: Large organizations have multi-
ple enterprise resource planning (ERP) systems, each with its
own database for operational data. Analytical data is consoli-
dated in an enterprise data warehouse in a batch offline pro-
cess and consumed by business users via corporate business
intelligence (BI) solutions. Lines of business that need custom
reporting on more recent data (but not real time) use addi-
tional data marts and local BI clients.

Current Generation of Enterprise Solutions

Figure 1: Typical Enterprise Software Situation

Corporate business intelligence (BI)

Database

Enterprise data warehouse

Database

Data mart

Local BI SAP® ERP
(or SAP CRM, SAP SRM,

SAP SCM)

BI

Database Database

Data mart

Database

Data mart

SAP® ERP
(or SAP CRM, SAP SRM,

SAP SCM)

BI

Database

Non-SAP
applications

Database

*ETL = extract, transform, load

ETL* ETL

Need for New Computing Model

Computer architecture has changed. Today’s multicore, multi-
CPU server provides fast communication between processor
cores via main memory or shared cache. Main memory is no
longer a limited resource. In 2012 servers with more than 2
terabytes of RAM are available.

Modern computer architectures create new possibilities but
also new challenges. With all relevant data in memory, disk
access is no longer a limiting factor for performance. In 2012
server processors have up to 80 cores, and 128 cores will come
in the near future. With the increasing number of cores, CPUs
will be able to process more and more data per time interval.
That means the performance bottleneck is now between the
CPU cache and main memory (see Figure 2). An optimized
database technology should focus on optimizing memory
access by the processing cores. Simple disk access optimiza-
tion by caching data in memory may not yield breakthrough
performances.

To provide an idea about sizes and access speeds of a current
memory hierarchy, the table below compares the different lay-
ers in this memory hierarchy (CPU characteristics for Intel’s
Nehalem architecture).

Technological Transition

Figure 2: Hardware Architecture: Current and Past
Performance Bottlenecks

Core

CPU

Main memory

Disk

CPU cache
Performance bottleneck
today: CPU waiting for data
to be loaded from memory
into cache

Performance bottleneck
in the past: Disk I/O

Type of Memory Size Latency

L1 cache 64 KB ~4 cycles [2 ns]

L2 cache 256 KB ~10 cycles [5 ns]

L3 cache (shared) 8 MB 35–40+ cycles [20 ns]

Main memory GBs up to terabytes 100–400 cycles

Solid state memory GBs up to terabytes 5,000 cycles

Disk Up to petabytes 1,000,000 cycles

7SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

Figure 3: Three-Tier Architecture of SAP® ERP2

7

Since traditional business solutions lean on OLTP databases,
they do not use current hardware efficiently. Figure 3 illustrates
the architecture of the SAP® ERP application.

Data is transmitted from the database tier to the application
logic tier for processing. As illustrated in Figure 2, the perfor-
mance bottleneck is between the main memory and the CPU.
Simple memory-resident caching with a traditional database
system is not the solution. The CPU spends half of the execu-
tion time in wasted stalls for two reasons: waiting for data
being loaded from main memory into the CPU cache, and the
fact that sequential processing of the business application can-
not properly utilize the increasing number of processing cores.
A new computing model, focused on exploiting the CPU cache
and scale in parallel to multicore processing, needs to be
developed.

Mobile clientNative client Web client

Presentation

Dispatcher and request queue management

Business logic

Application server

Work process 1Shared memory and caches Work process n

Database management system

Persistence

Optimizing Application and Calculation Processing Directly Within Main Memory

tency, isolation, durability] properties), and high availability.
SAP HANA supports most entry-level SQL92. SAP applications
that use Open SQL can run on the SAP HANA platform without
changes. SQL is the standard interface to SAP HANA. Addi-
tional functionality, such as freestyle search, is implemented as
SQL extensions. This approach simplifies the consumption of
SAP HANA by applications.

Analytical and Special Interfaces
In addition to SQL, SAP HANA supports business intelligence
clients directly using multidimensional expressions (MDX) for
products such as Microsoft Excel and business intelligence
consumer services (BICS), an internal interface for SAP
BusinessObjects™ solutions. For analytical planning, the
user may iterate values on the aggregated analytical reports.
With SAP HANA, a single value is transmitted for immediate
recalculation by the in-memory planning engine.

Parallel Data Flow Computing Model
To natively take advantage of massively parallel multicore pro-
cessors, SAP HANA manages the SQL processing instructions
into an optimized model that allows parallel execution and
scales incredibly well with the number of cores. The optimiza-
tion includes partitioning the data in sections for which the cal-
culations can be executed in parallel. SAP HANA supports
distribution across hosts. Large tables may be partitioned to be
processed in parallel by multiple hosts.

Figure 5 summarizes the results of a scale test that was per-
formed by an Intel team in collaboration with SAP. The test
demonstrates near-linear scale. The processing time is 16.8
seconds using 2 cores and improves to 1.4 seconds using 32
cores. Hyperthreading adds an additional 20% improvement.

Application Logic Extensions
The parallel-data-flow computing model is extended with
application-specific logic that is executed in processing nodes
as part of the model. Support includes SQLScript as a func-
tional language and “L” as an imperative language,3 which can
call upon the prepackaged algorithms available in the predic-
tive analysis library of SAP HANA to perform advanced statisti-
cal calculations. The application logic languages and concepts
are evolving as a result of collaboration with internal and exter-
nal SAP developer communities.

Taking a New Approach to Business Data
Processing

The SAP HANA platform implements a new approach to busi-
ness data processing. In fact, it is much more than the tradi-
tional definition of a database. And the in-memory attribute is
much more than a naïve caching of disk data structures in the
main memory.

A conceptual view of SAP HANA is illustrated in Figure 4. While
many of the concepts discussed below may be known in the
industry, the specific synergy of SAP HANA, which leverages
SAP expertise in different domains, creates a new class of
solutions.

Complete DBMS As Its Backbone
SAP HANA, first and foremost, incorporates a full database
management system (DBMS) with a standard SQL interface,
transactional isolation and recovery (ACID [atomicity, consis-

SAP HANA Platform Overview

Figure 4: Conceptual View of SAP HANA™ Platform

SQL SQLScript MDX* Other

Search

Parallel calculation engine

Objects graph store

Relational stores

Managed appliance

*MDX = multidimensional expression

Row based

Columnar

App extensions

Business function library

Predictive analysis library

9SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

are executed on a single column or several columns only, these
are scanned or aggregated into a column store in which each
column is stored in sequence as a (compressed) memory
block, providing much better results. An objects graph store
may benefit from a structure in which each object body is
stored in sequence and the graph navigation is stored as
another sequence to support unstructured and semistructured
data storage.

Appliance Packaging
SAP HANA applies optimizations that take CPU utilization to
the extreme. Appliance packaging enables full control of the
resources and a certification process for hardware configura-
tions for best performance and reliability. For example, SAP
HANA includes automatic recovery from memory errors with-
out system reboot. Systems with high memory are statistically
more sensitive to such error. In addition to a beneficial total
cost of ownership of the appliance packing model, it is a funda-
mental part of the SAP HANA design concept. Additionally,
SAP is actively investigating virtual appliances and cloud tem-
plates for SAP HANA to validate additional performance use
cases.

Business Function Library and Predictive Analysis Library
SAP leverages its deep application expertise to port specific
business application functionality as infrastructure within
SAP HANA to natively take advantage of in-memory compu-
ting technologies by optimizing application and calculation
processing directly within main memory. Examples include
currency conversion, a fundamental first step for a global com-
pany in which many reports, which otherwise may have utilized
plain SQL, utilize parallel processing well. Another example is
converting business calendars: different countries use different
civilian or business calendars and have different definitions of a
fiscal year.

Multiple In-Memory Stores Optimized Per Task
Native in-memory storage does not leverage the processing
power of modern CPUs well. The major optimization goal of
SAP HANA is to achieve high hit ratios in the different caching
layers of the CPU. This is done by data compression and by
adapting the data store for the task. For example, when the
processing is done row by row and consumes most of the fields
within a row, a row store in which each row is placed in mem-
ory in sequence provides the best performance. If calculations

10,000

1,000

Figure 5: Example for Near-Linear Scale
Joining TPC-H Data set (120 million records) in SAP HANA™ on 4S Nehalem-EX (2.26 GHz)
with 64 logical cores

16 32 64842

16,822

8,598

4,410

2,484
1,339 1,116

20% improvement due
to hyperthreading with

64 logical cores

Processing time
(milliseconds)

Number of threads
1

SQL processor

Figure 6: Processing Chain (Conceptual)

Technology Foundation

Engineered and Built for Optimization

The easiest way to think of calculation models is to see them
as data flow graphs, where the modeler defines data sources
as inputs and different operations (join, aggregation, projec-
tion, and so on) on top of them for data manipulation.

The calculation engine automatically breaks up a model into
operations that can be processed in parallel (model optimizer).
These operations are passed to the database optimizer, which
determines the best plan for accessing row or column stores,
leveraging cost-based optimizations and database statistics.
Parallel process paths are illustrated in Figure 7.

Execution Control

Execution control is illustrated in Figure 6. SQLScript, MDX,
and the planning engine interface can be seen as domain-
specific programming languages or models that can be used to
interact with SAP HANA. The artifacts in the different domain-
specific languages are translated by their specific compilers
into a common representation called a “calculation model.”

A calculation model is a directed acyclic graph with arrows
representing data flows and nodes that represent operations.
This approach and the exclusion of loops and recursion enable
automatic massive parallelism of the processing.

SQLScript
Standard SQL statement

MDX* query Other language/modelPlanning model

SQLScript compiler MDX compiler Other compilerPlanning engine

Calculation model (data flow graph)

Model optimizer (rule based)

Calculation engine

Model executor

Calculation engine
operators

Intermediate results

Statistics
Script execution runtime

Database executor

Row store

*MDX = multidimensional expression; *R = request

Database optimizer

Intermediate results

Column store

R*

R

RRLogical
execution plan

Physical
execution plan

Execute user-defined
function

R

R R

R

R

R

R

11SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

Calculation Models for SQLScript Table Functions

Coding Layers
As shown in Figure 8, the upper code layer within SAP HANA is
enabled through SQLScript, which is the rich stored-procedure
language of the SAP HANA database. SQLScript procedures
may contain SQL statements and can call other procedures. It
is used to write procedural orchestration logic and to define
complex data flows. SQLScript is compiled first into “L”
(restricted subset of C++), which is then compiled into native
code. SAP has developed, directly in C++, a business function
library (BFL) that includes functionality for performing busi-
ness processing at the database layer. BFL can be consumed
by the layers above.

SQLScript
SQLScript functions composed of SQL queries and function
calls can be represented as acyclic data flow graphs. These
functions, implemented in “L” language, are typically trans-
formed into calculation models that contain only one transfor-
mation node of type “L script.” In some cases a more complex
graph may be created with SQL nodes for embedded SQL
queries and nodes for imperative code sequences.

Each node has a set of inputs and outputs and an operation
that transforms the inputs into outputs. In addition to their pri-
mary operation, each node can also have a filter condition for
filtering the result set. The inputs and the outputs of the opera-
tions are table-valued operands. Inputs can be connected to
SAP HANA tables or to the outputs of nodes.

Calculation models support a variety of node types:
•• Nodes for set operations such as projection, aggregation,

join, union, minus, and intersection
•• SQL nodes that execute an SQL statement that is an attri-

bute of the node
•• Scripting nodes for describing complex operations that can-

not be described with a graph of data transformations. The
function of such a node is described by a procedural script.

To enable parallel execution, a calculation model may contain
split and join operations. A split operation is used to partition
input tables for subsequent processing steps based on parti-
tioning criteria. Operations between the split and join operation
may then be executed in parallel for the different partitions.

Figure 7: Parallel Process Paths

Relational
operation

Parallel 1 Parallel 2 Parallel 3

Relational
operation

Relational
operation

Relational
operation

Document

Relational
operation

Relational
operation

Procedural
operation

Figure 8: Coding Layers in SAP HANA

Application server

SQLScript

L

SA
P

H
A

N
A™

C++

Business function library (BFL)

Parallel Execution

SAPA HANA is engineered for parallel execution that scales
well with the number of available cores and across hosts when
distribution is used. Specifically, optimization for multicore
platforms accounts for the following two key considerations:

•• Data is partitioned wherever possible in sections that allow
calculations to be executed in parallel.

•• Sequential processing is avoided, which includes finding
alternatives to approaches such as thread locking.

Parallel Aggregation
In the shared-memory architecture within a node, SAP HANA
performs aggregation operations by spawning a number of
threads that act in parallel, each of which has equal access to
the data resident on the memory on that node. As illustrated at
the top of Figure 9, each aggregation functions in a loop-wise
fashion as follows:
1.	 Fetch a small partition of the input relation
2.	 Aggregate that partition
3.	 Return to step 1 until the complete input relation is

processed

Each thread has a private hash table where it writes its aggre-
gation results. When the aggregation threads are finished,
the buffered hash tables are merged by merger threads using
range partitioning. Each merger thread is responsible for
a certain range.4

The compilers that create the calculation model try to trans-
form as much of the input program as possible into a calcula-
tion model that consists only of set operation nodes and SQL
nodes. However, this is not possible in all cases. For example,
loops where an iteration depends on the results of previous
iterations cannot be transformed into data flow graphs. In
those cases, the parts of the domain-specific model that can-
not be transformed into data flow transformations are trans-
lated into scripting nodes with procedural code in “L” language.

Calculation models are more powerful than traditional SQL
queries or SQL views for two reasons:

•• These models offer the possibility to define specialized
parameterized calculation schemas when the actual query is
issued. Unlike an SQL view, a calculation model does not
describe the actual query to be executed. Instead, it
describes the structure of the calculation. Additional infor-
mation is supplied when the calculation model is executed.
Calculation engines use the actual parameters, attribute
lists, grouping attributes, and so on supplied with the invoca-
tion to instantiate a query-specific calculation model. This
“instantiated model” is optimized for the actual query and
does not contain attributes, nodes, or data flows that are not
needed for the specific invocation.

•• These models allow more flexible, scripted operations, via
SQLScript or imperative scripts in “L” language.

Figure 9: Use of Parallel Aggregation by SAP HANA™ to Divide Work Among Threads5

Table
Aggregation

thread 1

Aggregation
thread 1

Local hash table 1 Local hash table 1

Aggregation
thread 2

Cache-sized hash tables

Buffer

Merger
thread 1

Part hash table 1

Merger
thread 2Part hash table 2

13SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

A Differentiating Attribute of SAP HANA

One of the differentiating attributes of SAP HANA is having
both row-based and column-based stores within the same
engine.

Conceptually, a database table is a two-dimensional data
structure with cells organized in rows and columns. Computer
memory, however, is organized as a linear sequence. For stor-
ing a table in linear memory, two options can be chosen, as
shown in Figure 10. Row storage stores a sequence of records
that contain the fields of one row in the table. In a column store,
the entries of a column are stored in contiguous memory
locations.

Choosing Between Column and Row Store

With SAP HANA you can specify whether a table is to be stored
by column or by row.

Row store is recommended if:
•• The table has a small number of rows, such as configuration

tables.
•• The application needs to process only a single record at a

time (many selects or updates of single records).
•• The application typically needs to access the complete record.
•• The columns contain mainly distinct values so the compres-

sion rate would be low.
•• Aggregations and fast searching are not required.

Row store is used, for example, for SAP HANA database meta-
data, for application server internal data such as ABAP™ server
system tables, and for configuration data. In addition, applica-
tion developers may decide to put application tables in row
store if the criteria given above are matched.

Column store is recommended if:
•• Calculations are executed on a single column or a few col-

umns only.
•• The table is searched based on the values of a few columns.
•• The table has a large number of columns.
•• The table has a large number of rows, and columnar opera-

tions are required (aggregate, scan, and so on).
•• The majority of columns contain only a few distinct values

(compared to the number of rows), resulting in higher com-
pression rates.

Columnar and Row-Based Data Storage

Table

Country Product Sales

US Alpha 3,000

US Beta 1,250

JP Alpha 700

UK Alpha 450

Row store

Row 1 US

Alpha

3,000

Row 2 US

Beta

1,250

Row 3 JP

Alpha

700

Row 4 UK

Alpha

450

Column store

Country US

US

JP

UK

Product Alpha

Beta

Alpha

Alpha

Sales 3,000

1,250

700

450

Figure 10: Row- and Column-Based Storage for a Table

values in a column will be much faster if the column is run-
length coded and many additions of the same value can be
replaced by a single multiplication.

Elimination of additional indexes. Columnar storage elimi-
nates the need for additional index structures in many cases.
Storing data in columns works like having a built-in index for
each column: the column scanning speed of the in-memory
column store and the compression mechanisms, especially
dictionary compression, already allow read operations with
very high performance. In many cases, additional index struc-
tures will not be required. Eliminating additional indexes
reduces complexity and eliminates effort for defining and
maintaining metadata.

Parallelization. Column-based storage also makes it easy to
execute operations in parallel using multiple processor cores.
In a column store, data is already vertically partitioned. That
means operations on different columns can easily be pro-
cessed in parallel. If multiple columns need to be searched or
aggregated, each of these operations can be assigned to a dif-
ferent processor core. In addition, operations on one column
can be parallelized by partitioning the column into multiple
sections that are processed by different processor cores. Fig-
ure 11 shows both options. Columns A and B are processed by
different cores while column C was split into two partitions that
are processed by two different cores.

Higher performance for column operations. With columnar
data organization, operations on single columns, such as
searching or aggregations, can be implemented as loops over
an array stored in contiguous memory locations. Such an oper-
ation has high spatial locality and can efficiently be executed in
the CPU cache.

Temporal Tables

As mentioned above, SAP HANA supports temporal tables that
allow queries against a historical state of the data. Write opera-
tions on temporal tables do not physically overwrite existing
records. Instead, write operations always insert new versions of
the data record into the database. The different versions of a
data record have timestamps indicating their validity. Applica-
tions can tell SAP HANA that subsequent queries are to be pro-
cessed against a historical view of the database.

SAP HANA allows the joining of row-based tables with colum-
nar tables. However, it is more efficient to join tables that are
located in the same store. Therefore, master data that is fre-
quently joined with transaction data is put in a column store.

Advantages of Columnar Tables

When the criteria listed above are fulfilled, columnar tables
have several advantages.

Higher performance for column operations. Operations on
single columns, such as searching or aggregations, can be
implemented as loops over an array stored in contiguous
memory locations. Such an operation has high spatial locality
and can efficiently be executed in the CPU cache.

Higher data compression rates. Columnar data storage allows
highly efficient compression. Especially if the column is sorted,
there will be ranges of the same values in contiguous memory,
so compression methods such as run-length coding or cluster
coding can be used. This is especially promising for SAP busi-
ness applications as they have many columns containing only a
few distinct values compared to the number of rows. Examples
are country codes or status codes as well as foreign keys.

This high degree of redundancy allows for effective compres-
sion of column data. In row-based storage, successive memory
locations contain data of different columns, so compression
methods such as run-length coding cannot be used. In column
stores a compression factor of 10 can be achieved compared to
traditional row-oriented database systems.

Columnar data organization also allows highly efficient data
compression. This not only saves memory but also increases
speed for the following reasons:

•• Compressed data can be loaded into CPU cache more
quickly. As the limiting factor is the data transport between
memory and CPU cache, the performance gain will exceed
the additional computing time needed for decompression.

•• With dictionary coding, the columns are stored as sequences
of bit-coded integers. Checks for equality can be executed on
the integers (for example, during scans or join operations).
This is much faster than comparing string values.

•• Compression can speed up operations such as scans and
aggregations if the operator is aware of the compression.
Given a good compression rate, computing the sum of the

15SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

Column A Column B Column C

1000032 4545 2500

67867868 76 21

2345 6347264 78675

89886757 435 3432423

234123 3434 89089

21 1252 562356

2342343 342455

78787 3333333

9999993 8789 123

13427777 4523523 56743

23423 6767312 342564

123123123 789976 4523523

1212 20002 1343414

2009 2346098 33129089

454544711 78787 3665364

Figure 11: Example for Parallelization in a Column Store

Core 1 Core 2

Processed by Processed by

Core 3

Core 4

Processed by

Processed by

SAP HANA Benefits for Business Applications

Increase Read Performance by Eliminating Materialized Aggregates

Eliminating materialized aggregates has several advantages:
•• Simplified data model: With materialized aggregates, addi-

tional tables are needed, which make the data model more
complex. In the financials data model for the SAP Business
ByDesign™ solution, for example, persisted totals and bal-
ances are stored with a star schema. Specific business
objects are introduced for totals and balances, each of which
is persisted with one fact table and several dimension tables.
With SAP HANA, all these tables can be removed if totals and
balances are computed on the fly. A simplified data model
makes development more efficient, removes sources of pro-
gramming errors, and increases maintainability.

•• Simplified application logic: The application either needs to
update the aggregated value after an aggregated item was
added, deleted, or modified, or special aggregation runs
need to be scheduled that update the aggregated values at
certain time intervals, such as once a day. By eliminating per-
sisted aggregates, this additional logic is no longer required.

•• Higher level of concurrency: With materialized aggregates, a
write lock needs to be acquired after each write operation for
updating the aggregate. This limits concurrency and may
lead to performance issues. Without materialized aggre-
gates, only the document items are written. This can be done
concurrently without any locking.

•• “Up-to-datedness” of aggregated values: With on-the-fly
aggregation, the aggregate values are always up-to-date,
while materialized aggregates are sometimes updated only
at scheduled times.

Traditional business applications use materialized aggregates
to increase read performance. That means that the application
developers define additional tables in which the application
redundantly stores the results of aggregates, such as sums,
computed on other tables. The materialized aggregates are
computed and stored either after each write operation on the
aggregated data or at scheduled times. Read operations read
the materialized aggregates instead of computing them each
time.

With scanning speed of several megabytes per millisecond,
in-memory column stores make it possible to calculate
aggregates on large amounts of data on the fly with high per-
formance. This is expected to eliminate the need for material-
ized aggregates in many cases and thus eliminate up to 30%
of the required tables.

In financial applications, different kinds of totals and balances
are typically persisted as materialized aggregates for the
different ledgers: general ledger, accounts payable, accounts
receivable, cash ledger, material ledger, and so on. With an in-
memory column store, these materialized aggregates can be
eliminated as all totals and balances can be computed on the
fly with high performance from accounting document items.

SAP offers an incremental road map that enables your
organization to safely explore the technology today, seize
opportunities in side-by-side scenarios, and get prepared
for the increasing rate of doing business.

17SAP HANA™ for Next-Generation Business Applications and Real-Time Analytics

Dramatically Accelerating Speed of Both Data Querying and Business Processing

SAP is leading a paradigm shift in the way we think about data
management technologies. This rethinking affects how we con-
struct business applications and our expectations in consum-
ing them. Businesses that adopt this new technology will have
the potential for sharpening their competitive edge by dramati-
cally accelerating not only data querying speed but also busi-
ness processing speed. SAP is working closely with customers,
consultants, and developers for both immediate business gain
and a longer-term perspective and road map.

As a line-of-businesses driver in a large enterprise, you may
work in the short term with consultants to develop a business
case for real-time reporting on operational data. You may focus
on two or three specific business scenarios and deploy SAP
HANA in a side-by-side, nondisruptive manner. A team of your
IT experts will gradually gain experience working with SAP
HANA, learn to exploit its flexibility, and further extend the utili-
zation within your business-user community. Your organization
will become in-memory-computing ready and gain immediate
business benefits at the same time.

Find Out More

To learn more about SAP HANA, visit
www.experiencesaphana.com and www.sap.com/hana.

Paradigm Shift in Approach to
Data Management Technologies

FOOTNOTEs

1.	 Source: Plattner, Hasso and Zeier, Alexander, In-Memory Data
Management: An Inflection Point for Enterprise Applications (Springer-
Verlag, April 2011).
2.	 Ibid.
3.	 Restricted subset of C++ used internally at SAP.
4.	 Source: “Analyzing Business as It Happens: SAP In-Memory Appliance
Software (SAP HANA™) runs on the Intel® Xeon® processor to generate
superior, real-time business intelligence” (Intel|SAP, April 2011).
5.	 Ibid.

Additional Reading

J. Krueger, M. Grund, C. Tinnefeld, J. Schaffner, S. Mueller, and A. Zeier,
“Enterprise Data Management in Mixed Workload Environments”
(Hasso Plattner Institute for IT Systems Engineering, 2009)
http://ares.epic.hpi.uni-potsdam.de/apps/static/papers/2009
_JK_Enterprise_Data_Management_in_Mixed_Enviroments.pdf

H. Plattner, “A Common Database Approach for OLTP and OLAP Using
an In-Memory Column Database” (SIGMOD’09, June 29–July 2, 2009)
http://www.sigmod09.org/images/sigmod1ktp-plattner.pdf

H. Plattner, “Enterprise Applications – OLTP and OLAP – Share One
Database Architecture” (Hasso Plattner Institute for IT Systems
Engineering, 2010)
http://epic.hpi.uni-potsdam.de/pub/Home/InMemoryDataProcessing
2010/ShareOneDB.pdf

H. Plattner and A. Zeier, In-Memory Data Management: An Inflection Point
for Enterprise Applications (Springer-Verlag, April 2011)

“Analyzing Business as It Happens: SAP In-Memory Appliance Software
(SAP HANA™) runs on the Intel® Xeon® processor to generate superior,
real-time business intelligence” (Intel|SAP, April 2011)
http://www.intel.com/en_US/Assets/PDF/whitepaper/mc_sap_wp.pdf

D. Mettica and S. Lucas, “Prepare for the Quantum Leap in Real-Time
Analytics. How in memory analytics is going to change everything about
your enterprise” (IBM|SAP, June 2011)
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid
/d023f28a-6f9b-2e10-ec83-d84e518c3629?QuickLink=index

https://www.experiencesaphana.com/welcome
http://www.sap.com/hana/index.epx
http://ares.epic.hpi.uni-potsdam.de/apps/static/papers/2009_JK_Enterprise_Data_Management_in_Mixed_Enviroments.pdf
http://ares.epic.hpi.uni-potsdam.de/apps/static/papers/2009_JK_Enterprise_Data_Management_in_Mixed_Enviroments.pdf
http://www.sigmod09.org/images/sigmod1ktp-plattner.pdf
http://epic.hpi.uni-potsdam.de/pub/Home/InMemoryDataProcessing2010/ShareOneDB.pdf
http://epic.hpi.uni-potsdam.de/pub/Home/InMemoryDataProcessing2010/ShareOneDB.pdf
http://www.intel.com/en_US/Assets/PDF/whitepaper/mc_sap_wp.pdf
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d023f28a-6f9b-2e10-ec83-d84e518c3629?QuickLink=index
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d023f28a-6f9b-2e10-ec83-d84e518c3629?QuickLink=index

www.sap.com/contactsap

50 110 843 (12/01) ©2011 SAP AG. All rights reserved.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign,
SAP BusinessObjects Explorer, StreamWork, SAP HANA, and other
SAP products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of SAP AG in Germany
and other countries.

Business Objects and the Business Objects logo, BusinessObjects,
Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other
Business Objects products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of Business
Objects Software Ltd. Business Objects is an SAP company.

Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and
other Sybase products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of Sybase, Inc.
Sybase is an SAP company.

All other product and service names mentioned are the trademarks of
their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials
are provided by SAP AG and its affiliated companies (“SAP Group”)
for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or omissions with
respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should
be construed as constituting an additional warranty.

	Revolutionize the Way You Run Your Business
	Current Generation of Enterprise Solutions
	Technological Transition
	SAP HANA Platform Overview
	Technology Foundation
	Calculation Models for SQL Script Table Functions
	Parallel Execution

	Columnar and Row-Based Data Storage
	Advantages of Columnar Tables
	Temporal Tables

	SAP HANA Benefits for Business Applications
	Paradigm Shift in Approach to
Data Management Technologies

