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Introduction  

      The dynamics of atoms and molecules driven simultaneously by two color fields of 
commensurate frequencies, ω and nω, n = 2, 3,..,  is  a subject with considerable 
interest, mainly because quantum mechanics predicts that the superposition of two 
fields, each with its own controlled parameters, gives rise to  phenomena that single 
laser excitation cannot produce. The most conspicuous such phenomenon is the 
dependence of the processes of dissociation or ionization on the relative phase, φ, of the 
two laser fields, e.g [1-3]. The effect of φ on the ionization /dissociation yield has been 
demonstrated by two-color  experiments that have been conducted using either 1ω-2ω 
or 1ω-3ω fields, e.g. [4-6], as well as by corresponding theoretical works and numerical 
applications, e.g. [7-10]. These developments have been interpreted in the context of 
quantum interference since the second frequency adds alternative pathways towards 
fragmentation, thereby adding transition amplitudes causing interference effects that are 
sensitive to relative phase variations.  
       As is well-known, there is also interest in the application of nonlinear classical 
mechanics to quantum systems, one of the aims being to determine areas of 
correspondence between classical and quantum mechanics and to discover possibilities 
of applications where classical mechanics produces meaningful and physically relevant 
results.  
      As regards the general theory of classical dynamics, a thorough investigation of the 
relative phase effects on the escape dynamics, (ionization or dissociation), and of its 
dependence on the system and field parameters has, heretofore, been absent. The work 
reported here aims at rectifying this situation, via an application in the area of molecular 
dissociation dynamics. In order to be general, the study has utilized the Morse potential 
for the description of vibrational motion, a potential that has been used before in 
classical and in quantum mechanical investigations of dissociation dynamics induced by 
a laser field, e.g., [11-13]. Along with the ionization of H atoms, its laser-induced 
dissociation behavior constitutes a paradigm for the phenomenology of the quantum 
mechanical manifestations of regular and chaotic behavior in classical phase space, this 
being the core of the quantum chaos problem.  
       Apart from the dissociation of Morse molecules by single frequency laser, effects 
of the simultaneous driving with two laser fields has also been investigated, both 
classically and quantum mechanically, [13-15]. The main concern in those studies was 
to find the field parameters for which the addition of the second laser enhances the 
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dissociation process, thereby lowering the required field intensity for the occurrence of 
dissociation. However, no work has been reported yet on the effects of φ, and of its 
combination with variations of intensity, on the dissociation process. 
 
Description of the system and methodology 
      We consider the pure vibrational motion of a diatomic molecule for a fixed 
electronic configuration, under the assumption that rotational motion is not involved in 
the dissociation process. The molecular potential is modeled by a Morse potential: 
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where D is the dissociation energy, re is the equilibrium bond distance, and α
-1 is the 

range of the potential. HF, HCL, H2 and NO are some examples of diatomic molecules 
that have been modeled by the Morse potential.  
     The shape of the laser pulses is chosen to be trapezoidal. The case of ac-fields with 
constant amplitudes during the whole interaction has also been considered. The 
interaction between the molecule and the lasers is chosen to be a linear dipole function. 
Selected calculations with other functions did not show significant modifications of the 
results.  Thus, the Hamiltonian of the system is written as:                  
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maximum amplitudes of the electric fields of two lasers, ε(t) is the envelope of the laser 
pulses (the same for both lasers),  f1,  f2 are the corresponding laser frequencies and φ is 
the relative phase of the two lasers. The computational methodology involves the 
solution of the equations of the classical dynamics of the time-dependent nonlinear 
Hamiltonian (2), in conjunction with an appropriate choice of the ensemble of initial 
conditions.  
In order to imitate more closely the quantum photodissociation process, the initial 
classical state is chosen as an ensemble of initial conditions with specific energy E and 
angle variables θ uniformly distributed between –π and π.  
       All calculations reported below were done keeping the frequencies ω1,2  of two 
lasers and the initial vibration energy constant. The fast laser frequency is red-shifted 
from the Morse harmonic frequency ΩΜ and its normalized value is taken as ω2 = 0.84, 
so that single laser driving leads to maximal dissociation yield for all laser amplitudes 
[11-13]. The frequency of the slow laser is chosen to be one third of the fast laser: ω1 = 
ω2/3 = 0.28. Also, the molecule is considered to vibrate initially in its ground state. For 
the molecular constants of HF, the frequency of the fast laser is f2 = 3476 cm-1 while the 
normalized ground state energy is Eo = 0.045. A normalized field amplitude F1 or F2 = 1 
corresponds to a laser intensity of 320 TW/cm2. The remaining parameters are varied so 
as to examine their effect on the properties of the dissociation process. The main interest 
will be in mapping the dissociation behavior on the plane of the normalized field 
amplitudes (F1, F2) and examine the regions of maximum relative phase or stabilization 
effects on dissociation.  

 
Relative phase effects on dissociation dynamics 

        
     Based on the well-known dissociation criterion for classical trajectories[11-13], we 
calculate the sensitivity SPD of PD to φ, on a grid in the F2 - F1 plane. At each grid point, 
(F2, F1), SPD is defined as   
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                                     SPD (F2,F1)= PD
max(F2,F1)

 - PD
min (F2,F1)                            (7) 

where PD
max(F2, F1)

 = max(PD(F2, F1 ; φ), 0 <φ ≤ 2π) and PD
min(F2, F1)

 = min(PD(F2, 
F1; φ), 0 <φ ≤ 2π).  
     Taking into account that PD(φ) = PD(2π – φ,) [16], we implement the above 
estimation by calculating PD for φ = 0, 30, 60, 90, 120, 150, 180o. Figure 1 shows a 
contour plot of SPD(F2, F1) for initial energy equal to Eo. We observe that the region 
where SPD comes close to its maximum value, (SPD > 0.87), is clearly located above the 
diagonal F1 = F2 , i.e. the effect of the relative phase on PD is maximized for slow laser 
intensities larger than those of the fast laser (F1> F2).   

 
Figure 1. Contour plot on the plane F2 - F2 of the sensitivity, SPD, defined as the maximum 

recorded difference of PD as φ varies (see text for details). The darker the region is, the greater is 
the sensitivity of PD to changes of  φ. 

 
      How does this φ-dependence emerge? Which relative phases lead to maximum PD 
and which to minimum PD? Figure 2 shows the representative PD maps for φ = 0, 30, 90, 
180ο and reveals that the φ-dependence effect is associated with a stabilization 
phenomenon, (reduction of the PD), that is prominently present at φ = 0ο and is 
disappearing as φ increases. The stabilization, (or chemical bond hardening), occurs in 
two cases. First, for slow laser amplitudes just above the single slow laser dissociation 
threshold (F1

thres
  ≈ 0.13),  when the second fast laser is added, (‘fast laser 

stabilization’). Second, for fast laser amplitudes about the single fast laser threshold 
(F2

thres 
≈ 0.042) when the slow laser is added, (‘slow laser stabilization’).          

 
Phase Space Origins Of Stabilization And Of Relative Phase Effects .  

        A typical stroboscopic plot of the phase space of the driven molecule is shown in 
Fig. 3a, which records the trajectories of the initial state at integral multiples of the 
period T1 of the slow laser. As we can see, there are two regular regions (I and II) inside 
a chaotic sea of dissociating trajectories. The regular region I consists of KAM tori of 
the unperturbed Morse potential that have survived in the strongly perturbed system of 
Fig. 3a. They surround the stable periodic orbit emanating from the lowest energy fixed 
point of the Morse potential. On the other hand, the regular region II is in fact the island 
of stability corresponding to the lowest energy common resonance mentioned above, (E 
= 0.29). The red line shown also in Fig. 3a represents the ensemble of the initial 
conditions with energy E = Eo = 0.045 and equidistributed angles θ, as defined in 
Section II. The classical dissociation probability of the ground state is proportional to 
the part of the red line lying in the chaotic sea. Thus, the phase space origins of the  
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Figure 2. Contour plots of dissociation probability, PD, in the plane F2 - F1, for various relative 

phases: φ = 0o (a), φ = 30o (b), φ = 90o (c), φ = 180o (d). Notice the reduction of PD, 
(stabilization), as F2 (F1) increases with F1 (F2) just above (below) the single laser dissociation 

threshold, as well as its association with the maximum sensitivity region of Figure 1. 

 
Figure 3. Stroboscopic plots of phase space for F1 = 0.18, F2 = 0.02 and φ = 0ο (a), φ = 20ο (b), φ 

= 60ο (c), φ = 0ο (d).  
stabilization and relative phase effects detected in the previous Section probably have to 
do with the behavior of these regular regions, I and II, as φ and F2 vary.  
Indeed we observe that the increase in φ modifies both regular regions (Fig. 3b,c,d). 
More pronounced is the effect that it has on the region of the common resonance since it 
induces the disappearance of the resonance island for φ > 25o. More detailed recording 
of the phase space structure as φ increases indicates that this disappearance occurs 
gradually through a bifurcation process of the stable periodic orbit of the specific 
common resonance. We can say that, in some sense, the regular region II “is diluted” 
into the surrounding chaotic sea as φ increases. 
      The disappearance of the resonance does not seem to affect significantly the 
dissociation probability, since there is no overlap of the island with the initial state. On 
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the contrary, it is expected to influence the dissociation rate as it takes place in the 
dissociation paths of the escaping trajectories. 
      Less impressive but more influential on the dissociation dynamics is the effect of the 
variation of φ on the KAM regular region I. As one can see in Figure 3, increasing φ 
causes the shrinking of that region and at the same time the movement of its position in 
phase space. The combination of these effects has drastic results concerning the 
overlapping of the KAM region with the line of the initial state and, in fact, constitutes 
the phase space origin of the relative phase effect on the dissociation probability in 
maximum sensitivity regions of the plane F1- F2. No such modifications of the KAM 
region I have been observed for F1 and F2 outside maximum sensitivity regions.  
       In the previous paragraph, we demonstrated numerically the possibility of both 
slow- and fast-laser stabilization of the dissociation dynamics when appropriate choices 
for the other laser field are made. Further, these stabilization effects are  φ-sensitive; 
they are present for φ = 0ο but diminish as φ increases. In Fig. 4,5 we show that, in 
phase space terms, this stabilization behavior is generated by the response of the KAM 
region I to laser intensity variations, in a similar way to the relative phase effects 
discussed above.  

 
Figure 4. Stroboscopic plots revealing the phase space origins of fast-laser stabilization effect. 
For all plots, F1 = 0.18, i.e. just above the single laser dissociation threshold, while the values of 
the second laser intensity and the relative phase are shown on the plots.  
 
Conclusions 
       In this project, the dissociation dynamics of a dichromatically laser-driven diatomic 
Morse molecule vibrating in the ground state has been investigated, by applying tools of 
the nonlinear theory of Hamiltonian systems. Emphasis has been placed on the role of 
the relative phase of the two fields, φ. Firstly, it has been found that, just like in 
quantum mechanics, there is dependence of the dissociation probability on φ. Then, it 
has been demonstrated that addition of the second laser leads to suppression of 
probability (‘stabilization’), when the intensity of the first laser is kept constant just 
above or below the single laser dissociation threshold. Τhis ‘chemical bond hardening’  
diminishes as φ increases. These effects have been investigated and interpreted in terms  
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Figure 5. Stroboscopic plots revealing the phase space origins of slow laser stabilization effect. 
For all plots, F2 = 0.04, i.e. just below the single laser dissociation threshold. The values of the 

other laser intensity and the relative phase are shown on the plots. 
 
of modifications in phase space topology.  Variations of φ as well as of the intensity of 
the second laser may cause i) appearance/ disappearance of the stability island 
corresponding to the common resonance with the lowest energy and ii) deformation and 
movement of the region of Kolmogorov Arnold Moser (KAM) tori that survive from the 
undriven system. The latter has been demonstrated to be the main origin in phase space 
of stabilization and φ-dependence effects[17]. 
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