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1. Introduction

The analysis of shells presents a challenge, stheg formulation may become
cumbersome and their behavior can be unpredictaliteregard to geometry or support
conditions. For this reason, shells have been dersii as the “prima donna of
structures” in the sense that their performancesdép very much on how they are
designed and how they are treated. The extremeitisgpsof thin shells to
imperfections in material, geometry and boundaryndaions can be described
reasonably well, if the assumption of a randomtélaton of these imperfections is
induced in the analysis, in other words if a ststicafinite element analysis is
performed.

2. Finite element analysis of shellswith multiplerandom material and geometric
properties

In the first part of the present project, a stotibanite element analysis of shell
structures with combined uncertain material andwgtac properties is performed. For
this purpose, a stochastic formulation of the tyidar composite facet shell element
TRIC is derived assuming random variation of theiYgis modulus, the Poisson’s ratio
and the thickness of the shell. As a result ofghegposed formulation and the special
features of the element, the stochastic stiffneafrixnof TRIC depends finally on a
minimum number of random variables representingstioehastic field (local average
and weighted integral methods). This fact leads toost-effective stiffness matrix,
which is very important in the case of a time cansly stochastic analysis of real
world structures (Stefanou et al. [1]).

The spatial fluctuation of the mechanical and gdomeroperties is described by
uncorrelated 2D-1V homogeneous Gaussian stochéstits, sample functions of
which are generated via the spectral representatiethod (Figure 1). Under the
assumption of a pre-specified power spectral demgitction for these stochastic fields,
it is possible to compute the response variabdity realistic shell structure using the
direct Monte Carlo Simulation (MCS) technique. Foe simulation of the stochastic
fields, the Karhunen-Loeve expansion could alsoubed combined with a wavelet-



Galerkin scheme for the efficient numerical solntaf the respective Fredholm integral
equation (eigenvalue problem). However, some nuwakmstabilities reported during
the calculation of eigenvalues at various wavedgtls (Stefanou et al. [4]) led finally
to the use of the spectral representation method.

In this section, two shells of cylindrical (Scorndello shell) and hyperboloid shape are
tested (Stefanou et al. [1]). The sensitivity (fpense statistics with regard to the scale
of correlation of the stochastic fields, quantified the correlation length paramekeis
first examined. For both shell geometries, theldisement variability shows similar
trends, starting from small values for small catien lengths, up to large values for
large correlation lengths. When the Young's moduduthe only random parameter of
the problem, the coefficient of variation (COV) thfe selected displacement at a
characteristic point C of each structure tend§iéoQOV of Young’'s modulus£=10%)
for large values of parametbr as expected. It is also evident that random tranian
the shell thickness has significant effect on tispldcement variability compared to the
effect of random Young’s modulus. When both quatitare supposed to vary
randomly, the response COV tends to values thaR-&® times greater than the input
COV (Figure 2).
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Figure 1. (a) Power spectral density function (b) Samplecfion pattern of a stochastic field
produced by the spectral representation method.

In the case of combined fluctuation of Young’'s mioduand Poisson’s ratio, the
displacement variability curve indicates the snedfect of the Poisson’s ratio on the
results. Slight differences are found between #mults given by the local average
method and those of the weighted integral methothéncase of Scordelis-Lo shell.
These differences become somewhat more pronoumcéakei hyperboloid shell case
(Figure 3). In addition, the effect of type of aaation, expressed in this work by the
mathematical form of the power spectrum, is inggdad. Due to the relation existing
between the power spectral density function of stechastic field describing the
random input quantities and the variance of a nespauantity, slight differences are
once again observed.

Investigations similar to the aforementioned weds® anade with regard to the stress
variability. The main observation in this case Isatt the stress fluctuation is
substantially different not only between severedsg components but even between the



same stress component within different elementss Vhriation takes its maximum
value when the Young’'s modulus and the shell thesknare simultaneously varying.
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Figure 2. (a) Scordelis-Lo shell: COV of displacem&ntas a function of correlation length
parameteb (b) Hyperboloid shell: COV of displacememtas a function of correlation length
parameteb; (og=0,=10%).
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Figure 3. (a) Scordelis-Lo shell (b) Hyperboloid shell: Qmemison between local average and
weighted integral methods — COV of displacemeyds a function of correlation length
parameter for the case of combined Young’s modahasPoisson’s ratio variation
(0e=0,=10%).

3. Improving the computational efficiency in stochastic shell finite element analysis

The Monte Carlo Simulation (MCS) technique, whistthe most effective and widely
applicable method for handling large-scale stodtdsinite Element (FE) problems
with complicated structural response, involves espe computations due to the
successive FE analyses required. Consequently,ndleel for developing efficient
computational techniques emerges, in order to exatel the MCS procedure and make
it more tractable in structural engineering practi@he second part of the work
performed in the framework of the present projedbcused on the acceleration of the
most time consuming tasks performed in MCS-basedhsastic FE analysis of shell
structures (Charmpis et al. [2,3]), as describddvine



3.1 Generation of stochastic field samples

Stochastic FE analysis can be performed using ®parate meshes: (a)stochastic
mesh for generating random field values and é¥tructural mesh to carry out all
standard FE computations. The stochastic meshdgigends on the correlation length
parameters (smaller correlation lengths inducenied for finer meshes), while the
structural mesh size is usually determined by ttigeeted gradient of the stress field
(steeper stress gradients impose the use of elemeétit smaller size). As the two
meshes typically coincide, the stochastic meshsisally too fine resulting in severe
computational difficulties. However, simulation uéts of acceptable accuracy are often
obtainable with a stochastic mesh, which is comalolg coarser than the structural one.
Working on a coarser stochastic mesh acceleratetona field generation by a factor
depending on how much coarser this mesh can be omeaeared to the structural one.

In this project a new mapping approach betweernvtioetypes of meshes is introduced.
More specifically, random field values are econallyc generated on a coarser
stochastic mesh and then a bivariate interpolapitedure is applied to map these
values onto the finer structural mesh. This bivarimterpolation scheme allows the
appropriate mapping of random field information viie¢n any pair of arbitrarily
generated structural and stochastic meshes. Harsiegle mapping concept is capable
of treating: (a) stochastic meshes constructed royming elements of the structural
mesh and (b) completely independent structural stodhastic meshes produced by
separately invoking a mesh generator. Using thterpolation algorithm we can
effectively deal with irregularly distributed grigoints, therefore we can handle
structured and unstructured meshes, as well aljjaefined meshes with non-uniform
element sizes across the discretized domain.

3.2 Computation of stiffness matrices

The TRIC shell element implemented in this projées exhibited satisfactory
numerical behavior and computational efficiency.eTost-effectiveness of TRIC
ensures the formation of shell stiffness matriaesthe context of MCS-based FE
analysis in reasonable processing times.

3.3 Solution of finite element equations

In MCS-based stochastic FE analysis successivarlisgstems with multiple left-hand
sides have to be processed, since the coefficiatbnthanges in every simulation:

In the above equatiorK; andu; are the stiffness matrix and vector of unknownatod
displacements associated with thbk simulation, while K, is the stiffness matrix
associated with the initial simulation ahé the vector of nodal loads. The difference
matrix AK; is generally small compared 0, .

The standard direct method based on Cholesky faatmn and subsequent forward
and backward substitutions remains the most popalartion scheme for FE equations
(1). However, this solution approach performs ppanl large-scale problems and the



solution of equations (1) becomes a major compratitask that hinders the overall
MCS process. Therefore, alternative solution sclsena¥e been sought in this project,
in order to handle stochastic FE equations in apeagationally more efficient way.

PCGXKj is a hybrid method combining both iterative angedi solution concepts. This
method uses the iterative Preconditioned Conju@adelient (PCG) algorithm equipped
with a preconditioner following the rationale otomplete Cholesky preconditionings.
Hence, the incomplete factorization of the stiffvasatrix K, + AK; can be written as:

L DL =Ko +AK; —E;, (2)

where D, is a diagonal matrixL; is a lower triangular matrix with unit elements the
leading diagonal andg; is an error matrix which does not have to be fatnter the
typical reanalysis problem (1) matrik; is taken asAK; and the preconditioning
matrix becomes the complete factorized initialfiséiés matrix:K = K, . If matrix AK;

is sufficiently small compared t&,, we can expect tha = Ko will act as a strong

preconditioner for the successive conjugate gradiefutions. The repeated solutions
required for the preconditioning step of the PC@oathm can be efficiently treated as
problems with multiple right-hand sides with a dirsolution scheme, provided that
K, is retained in memory in its factorized form.

PCGXKj is a customized version of PCG, which takes imwoant the relatively small
differences between successive stochastic stiffrneggces and avoids the treatment of
equations (1) as stand-alone problems. This hydwidtion approach runs faster and is
less storage demanding than a purely direct solver.

3.4 Parallel execution of the MCS process

Parallel processing is particularly suitable fopiog with the excessive computational
workloads produced in the context of MCS-based F&lysis. In order to take
advantage of high performance computing environmyeht global set of simulations
to be performed can be decomposed into subseth, @aavhich is assigned to a
different processor. In other words, several sitnuteg are concurrently conducted by
executing the standard sequential MCS-based FEeguoe on each processor for a part
of the total number of simulations. In this projatie experimental test bed for
distributed computations is a cluster of 16 ethenstworked Pentium PCs running the
Linux operating system and the message passinwvaeftParallel Virtual Machine
(PVM). A network-distributed implementation of th&CS procedure is implemented,
which allows for inherently parallel computationgheut any need for inter-processor
communication while processing each simulation’sgr@blem. Although certain tasks
of the PCGK, solution method are either of sequential naturecanot be evenly
balanced among the utilized PCs, most major contiput tasks of the MCS process
are embarrassingly parallel leading to favorabkesipps.

3.5 Numerical results

A pinched cylinder is a characteristic test problemith which the computational
procedures described above have been evaluatedgpahial variation of the structure’s



modulus of elasticitye and thicknesdh is represented by two uncorrelated 2D-1V
homogeneous Gaussian stochastic fields with coefiie of variatiorvg=0,=10% and
common correlation lengtb=2.4m. The objective of the MCS-based stochastityais

of the pinched cylinder problem is to calculate pinebability P; that the absolute value
of the structure’s vertical displacement at a nexieeeds some critical value. A number
of TRIC shell FE meshes of various sizes are preddor this stochastic test problem.
The finest of these meshes, which consists ok3Bhodes with 19800 active d.o.f., is
adopted as the structural FE mesh. A single sttichash, which may be any of the
aforementioned meshes, is employed in each tesifrtie pinched cylinder example to
generate random field values for all uncertain progs involved in the stochastic
analysis. The results reported in Table 1 demotesthe efficiency of the computational
approaches introduced in this project.

Number  Solution  Stochastic Total
of PCs method  mesh Time (s) storage
Stochastic  Bivariate Stiffness  Factorization ~ Solution Total per PC
fields interpolation matrices (MB)
1 Direct 100<35 15656.1 - 740.1 32822.6 3125 495313 57.18
PCG-Ky 100x35 15656.1 - 518.8 6.9 475.2 16657.0 34.60
PCG-Ky 15x5 276.4 8.1 518.8 6.9 475.3 12855 34.65
8 Direct 100x35 1957.0 - 92.5 4102.8 39.1 6191.4 57.18
PCG-K 100<35 1957.0 - 64.9 6.9 63.3 2092.1 34.60
PCG-K 15x5 34.6 1.0 64.9 6.9 63.4 170.8 34.65
16 Direct 100x35 978.5 - 46.3 2051.4 19.5 3095.7 57.18
PCG-K  100x35 978.5 - 32.4 6.9 33.1 1050.9 34.60
PCG-Ky 15x5 17.3 0.5 32.4 6.9 33.1 90.2 34.65

Table 1. Pinched cylinder: Time allocation and storageunesments (2400 simulations).
Note: practically the sanfg-result is obtained in all MCS runs.

4. Concluding remarks

In this project, a stochastic FE analysis of slséllictures with combined uncertain
material and geometric properties is performed wWithTRIC shell element. In an effort
to accelerate the most time consuming tasks peddrim MCS-based stochastic shell
FE analysis, the drawbacks of standard computdtiechniques employed to perform
such analyses are addressed (coinciding structamdl stochastic meshes, direct
equation solving, sequential processing) and méfreiemt alternative procedures are
presented (use of coarse stochastic meshes, KRC6&olution method, parallel
processing). The effectiveness of these altermratiezomes evident by comparing their
computational efficiency to that yielded by convenal techniques. For instance, the
total processing time needed to conduct 2400 stmouka for a stochastic configuration
of the pinched cylinder test problem is reducednfralmost 14 hours using standard
technigues to just 90 seconds with the aforemeetioalternative computational
schemes. Thus, the adoption of efficient computali@pproaches ensures that MCS-
results in the context of stochastic shell FE asialyare obtainable in affordable
processing times.
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