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1. Introduction 

The analysis of shells presents a challenge, since their formulation may become 
cumbersome and their behavior can be unpredictable with regard to geometry or support 
conditions. For this reason, shells have been considered as the “prima donna of 
structures” in the sense that their performance depends very much on how they are 
designed and how they are treated. The extreme sensitivity of thin shells to 
imperfections in material, geometry and boundary conditions can be described 
reasonably well, if the assumption of a random fluctuation of these imperfections is 
induced in the analysis, in other words if a stochastic finite element analysis is 
performed. 

 

2. Finite element analysis of shells with multiple random material and geometric 
properties 

In the first part of the present project, a stochastic finite element analysis of shell 
structures with combined uncertain material and geometric properties is performed. For 
this purpose, a stochastic formulation of the triangular composite facet shell element 
TRIC is derived assuming random variation of the Young’s modulus, the Poisson’s ratio 
and the thickness of the shell. As a result of the proposed formulation and the special 
features of the element, the stochastic stiffness matrix of TRIC depends finally on a 
minimum number of random variables representing the stochastic field (local average 
and weighted integral methods). This fact leads to a cost-effective stiffness matrix, 
which is very important in the case of a time consuming stochastic analysis of real 
world structures (Stefanou et al. [1]). 

The spatial fluctuation of the mechanical and geometric properties is described by 
uncorrelated 2D-1V homogeneous Gaussian stochastic fields, sample functions of 
which are generated via the spectral representation method (Figure 1). Under the 
assumption of a pre-specified power spectral density function for these stochastic fields, 
it is possible to compute the response variability of a realistic shell structure using the 
direct Monte Carlo Simulation (MCS) technique. For the simulation of the stochastic 
fields, the Karhunen-Loeve expansion could also be used combined with a wavelet-
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Galerkin scheme for the efficient numerical solution of the respective Fredholm integral 
equation (eigenvalue problem). However, some numerical instabilities reported during 
the calculation of eigenvalues at various wavelet levels (Stefanou et al. [4]) led finally 
to the use of the spectral representation method.     

In this section, two shells of cylindrical (Scordelis-Lo shell) and hyperboloid shape are 
tested (Stefanou et al. [1]). The sensitivity of response statistics with regard to the scale 
of correlation of the stochastic fields, quantified via the correlation length parameter b is 
first examined.  For both shell geometries, the displacement variability shows similar 
trends, starting from small values for small correlation lengths, up to large values for 
large correlation lengths. When the Young’s modulus is the only random parameter of 
the problem, the coefficient of variation (COV) of the selected displacement wc at a 
characteristic point C of each structure tends to the COV of Young’s modulus (σE=10%) 
for large values of parameter b, as expected. It is also evident that random variation in 
the shell thickness has significant effect on the displacement variability compared to the 
effect of random Young’s modulus. When both quantities are supposed to vary 
randomly, the response COV tends to values that are 2-2.5 times greater than the input 
COV (Figure 2). 
 

       
                                   (a)                                                                           (b) 

Figure 1. (a) Power spectral density function (b) Sample function pattern of a stochastic field 
produced by the spectral representation method. 

 

In the case of combined fluctuation of Young’s modulus and Poisson’s ratio, the 
displacement variability curve indicates the small effect of the Poisson’s ratio on the 
results. Slight differences are found between the results given by the local average 
method and those of the weighted integral method in the case of Scordelis-Lo shell. 
These differences become somewhat more pronounced in the hyperboloid shell case 
(Figure 3). In addition, the effect of type of correlation, expressed in this work by the 
mathematical form of the power spectrum, is investigated. Due to the relation existing 
between the power spectral density function of the stochastic field describing the 
random input quantities and the variance of a response quantity, slight differences are 
once again observed. 

Investigations similar to the aforementioned were also made with regard to the stress 
variability. The main observation in this case is that the stress fluctuation is 
substantially different not only between several stress components but even between the 
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same stress component within different elements. This variation takes its maximum 
value when the Young’s modulus and the shell thickness are simultaneously varying. 
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                                  (a)                                                                           (b) 

Figure 2. (a) Scordelis-Lo shell: COV of displacement wc as a function of correlation length 
parameter b (b) Hyperboloid shell: COV of displacement wc as a function of correlation length 

parameter b1 (σE=σh=10%). 
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                                  (a)                                                                           (b) 

Figure 3. (a) Scordelis-Lo shell (b) Hyperboloid shell: Comparison between local average and 
weighted integral methods – COV of displacement wc as a function of correlation length 

parameter for the case of combined Young’s modulus and Poisson’s ratio variation 
(σE=σν=10%). 

 

3. Improving the computational efficiency in stochastic shell finite element analysis 

The Monte Carlo Simulation (MCS) technique, which is the most effective and widely 
applicable method for handling large-scale stochastic Finite Element (FE) problems 
with complicated structural response, involves expensive computations due to the 
successive FE analyses required. Consequently, the need for developing efficient 
computational techniques emerges, in order to accelerate the MCS procedure and make 
it more tractable in structural engineering practice. The second part of the work 
performed in the framework of the present project is focused on the acceleration of the 
most time consuming tasks performed in MCS-based stochastic FE analysis of shell 
structures (Charmpis et al. [2,3]), as described below. 
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3.1 Generation of stochastic field samples 

Stochastic FE analysis can be performed using two separate meshes: (a) a stochastic 
mesh for generating random field values and (b) a structural mesh to carry out all 
standard FE computations. The stochastic mesh size depends on the correlation length 
parameters (smaller correlation lengths induce the need for finer meshes), while the 
structural mesh size is usually determined by the expected gradient of the stress field 
(steeper stress gradients impose the use of elements with smaller size). As the two 
meshes typically coincide, the stochastic mesh is usually too fine resulting in severe 
computational difficulties. However, simulation results of acceptable accuracy are often 
obtainable with a stochastic mesh, which is considerably coarser than the structural one. 
Working on a coarser stochastic mesh accelerates random field generation by a factor 
depending on how much coarser this mesh can be made compared to the structural one. 

In this project a new mapping approach between the two types of meshes is introduced. 
More specifically, random field values are economically generated on a coarser 
stochastic mesh and then a bivariate interpolation procedure is applied to map these 
values onto the finer structural mesh. This bivariate interpolation scheme allows the 
appropriate mapping of random field information between any pair of arbitrarily 
generated structural and stochastic meshes. Hence, a single mapping concept is capable 
of treating: (a) stochastic meshes constructed by grouping elements of the structural 
mesh and (b) completely independent structural and stochastic meshes produced by 
separately invoking a mesh generator. Using this interpolation algorithm we can 
effectively deal with irregularly distributed grid points, therefore we can handle 
structured and unstructured meshes, as well as locally refined meshes with non-uniform 
element sizes across the discretized domain. 

 

3.2 Computation of stiffness matrices 

The TRIC shell element implemented in this project has exhibited satisfactory 
numerical behavior and computational efficiency. The cost-effectiveness of TRIC 
ensures the formation of shell stiffness matrices in the context of MCS-based FE 
analysis in reasonable processing times. 

 

3.3 Solution of finite element equations 

In MCS-based stochastic FE analysis successive linear systems with multiple left-hand 
sides have to be processed, since the coefficient matrix changes in every simulation: 

                                             fuKKfuK iiii =∆+⇒= )( 0 .                                        (1) 

In the above equation, iK  and iu  are the stiffness matrix and vector of unknown nodal 

displacements associated with the ith simulation, while 0K  is the stiffness matrix 
associated with the initial simulation and f is the vector of nodal loads. The difference 
matrix iK∆  is generally small compared to 0K . 

The standard direct method based on Cholesky factorization and subsequent forward 
and backward substitutions remains the most popular solution scheme for FE equations 
(1). However, this solution approach performs poorly in large-scale problems and the 
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solution of equations (1) becomes a major computational task that hinders the overall 
MCS process. Therefore, alternative solution schemes have been sought in this project, 
in order to handle stochastic FE equations in a computationally more efficient way. 

PCG-K0 is a hybrid method combining both iterative and direct solution concepts. This 
method uses the iterative Preconditioned Conjugate Gradient (PCG) algorithm equipped 
with a preconditioner following the rationale of incomplete Cholesky preconditionings. 
Hence, the incomplete factorization of the stiffness matrix iKK ∆+0  can be written as: 

                                                  ii
t
iii EKKLDL −∆+= 0

~~~
,                                              (2) 

where iD
~

 is a diagonal matrix, iL
~

 is a lower triangular matrix with unit elements on the 

leading diagonal and iE  is an error matrix which does not have to be formed. For the 

typical reanalysis problem (1) matrix iE  is taken as iK∆  and the preconditioning 

matrix becomes the complete factorized initial stiffness matrix: 0
~

KK = . If matrix iK∆  

is sufficiently small compared to 0K , we can expect that 0
~

KK =  will act as a strong 
preconditioner for the successive conjugate gradient solutions. The repeated solutions 
required for the preconditioning step of the PCG algorithm can be efficiently treated as 
problems with multiple right-hand sides with a direct solution scheme, provided that 

0K  is retained in memory in its factorized form. 

PCG-K0 is a customized version of PCG, which takes into account the relatively small 
differences between successive stochastic stiffness matrices and avoids the treatment of 
equations (1) as stand-alone problems. This hybrid solution approach runs faster and is 
less storage demanding than a purely direct solver. 

 

3.4 Parallel execution of the MCS process 

Parallel processing is particularly suitable for coping with the excessive computational 
workloads produced in the context of MCS-based FE analysis. In order to take 
advantage of high performance computing environments, the global set of simulations 
to be performed can be decomposed into subsets, each of which is assigned to a 
different processor. In other words, several simulations are concurrently conducted by 
executing the standard sequential MCS-based FE procedure on each processor for a part 
of the total number of simulations. In this project the experimental test bed for 
distributed computations is a cluster of 16 ethernet-networked Pentium PCs running the 
Linux operating system and the message passing software Parallel Virtual Machine 
(PVM). A network-distributed implementation of the MCS procedure is implemented, 
which allows for inherently parallel computations without any need for inter-processor 
communication while processing each simulation’s FE problem. Although certain tasks 
of the PCG-K0 solution method are either of sequential nature or cannot be evenly 
balanced among the utilized PCs, most major computational tasks of the MCS process 
are embarrassingly parallel leading to favorable speedups. 

 

3.5 Numerical results 

A pinched cylinder is a characteristic test problem, with which the computational 
procedures described above have been evaluated. The spatial variation of the structure’s 
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modulus of elasticity E and thickness h is represented by two uncorrelated 2D-1V 
homogeneous Gaussian stochastic fields with coefficients of variation σE=σh=10% and 
common correlation length b=2.4m. The objective of the MCS-based stochastic analysis 
of the pinched cylinder problem is to calculate the probability Pf that the absolute value 
of the structure’s vertical displacement at a node exceeds some critical value. A number 
of TRIC shell FE meshes of various sizes are produced for this stochastic test problem. 
The finest of these meshes, which consists of 100×35 nodes with 19800 active d.o.f., is 
adopted as the structural FE mesh. A single stochastic mesh, which may be any of the 
aforementioned meshes, is employed in each test run of the pinched cylinder example to 
generate random field values for all uncertain properties involved in the stochastic 
analysis. The results reported in Table 1 demonstrate the efficiency of the computational 
approaches introduced in this project. 

 

  Time (s)    
Number 
of PCs 

Solution 
method 

Stochastic 
mesh 

Stochastic 
fields 

Bivariate 
interpolation 

Stiffness 
matrices 

Factorization Solution Total 

Total 
storage 
per PC 
(MB) 

1 Direct 100×35 15656.1 - 740.1 32822.6 312.5 49531.3 57.18 

 PCG-K0 100×35 15656.1 - 518.8 6.9 475.2 16657.0 34.60 

 PCG-K0 15×5 276.4 8.1 518.8 6.9 475.3 1285.5 34.65 

8 Direct 100×35 1957.0 - 92.5 4102.8 39.1 6191.4 57.18 

 PCG-K0 100×35 1957.0 - 64.9 6.9 63.3 2092.1 34.60 

 PCG-K0 15×5 34.6 1.0 64.9 6.9 63.4 170.8 34.65 

16 Direct 100×35 978.5 - 46.3 2051.4 19.5 3095.7 57.18 

 PCG-K0 100×35 978.5 - 32.4 6.9 33.1 1050.9 34.60 

 PCG-K0 15×5 17.3 0.5 32.4 6.9 33.1 90.2 34.65 

Table 1. Pinched cylinder: Time allocation and storage requirements (2400 simulations). 
Note: practically the same Pf-result is obtained in all MCS runs. 

 

4. Concluding remarks 

In this project, a stochastic FE analysis of shell structures with combined uncertain 
material and geometric properties is performed with the TRIC shell element. In an effort 
to accelerate the most time consuming tasks performed in MCS-based stochastic shell 
FE analysis, the drawbacks of standard computational techniques employed to perform 
such analyses are addressed (coinciding structural and stochastic meshes, direct 
equation solving, sequential processing) and more efficient alternative procedures are 
presented (use of coarse stochastic meshes, PCG-K0 solution method, parallel 
processing). The effectiveness of these alternatives becomes evident by comparing their 
computational efficiency to that yielded by conventional techniques. For instance, the 
total processing time needed to conduct 2400 simulations for a stochastic configuration 
of the pinched cylinder test problem is reduced from almost 14 hours using standard 
techniques to just 90 seconds with the aforementioned alternative computational 
schemes. Thus, the adoption of efficient computational approaches ensures that MCS-
results in the context of stochastic shell FE analysis are obtainable in affordable 
processing times. 
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