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Introduction 

The objective of this research program was the development of methodologies for the 
solution of Mixed Integer and Linear Programming (MINLP) problems, based on the 
utilization of genetic algorithms. The main result was the development of a hybrid 
method that combines the advantages of genetic algorithms with other evolutionary and 
traditional optimization techniques. Although the methodology that has been developed 
is of general use, the research effort was concentrated on the solution of production 
planning and model predictive control problems, which are of great interest for the 
industry. 

 

Modeling systems as MINLP problems 

The development of MINLP models that describe complex systems is essential for the 
application of an optimization algorithm and the measurement of its performance. Two 
different systems were modeled as MINLP problems in this work: 
a) The production scheduling system in a lube production plant. The proposed 
methodology splits the time horizon into several periods and formulates an optimization 
problem, where detailed mass balances describe the relationships between the different 
process variables [1]. The discrete time representation was selected due to the fact that 
the scheduling horizon is usually rather long (more than 5 days), so that a continuous 
time model could be of lower practical applicability. The objective function is 
formulated to describe in a realistic manner the total cost throughout the time horizon. 
The model takes into account special requirements of the lube production plant that are 
not considered by most generic models. For example, it can handle special storage 
limitations and can generate a schedule, where the products are not produced in the same 
order in all stages.  
b) An adaptive control system based on the prediction of a dynamic discrete-time 
adaptive model. This system requires at each time instance the solution of a nonlinear 
optimization problem, aiming at the determination of the optimal control moves [2,3]. 
The main difficulty in the solution of this particular problem is the inclusion of the 



 

                                                                                  

 

“persistent excitation” criterion which is formulated as a matrix function of the control 
moves that must be positive definite. Inclusion of this additional constraint renders the 
optimization problem non-convex, meaning that standard optimization methods require 
long computational times that are not acceptable for a problem that must be solved in 
real time.  

 

Development of an evolutionary algorithm for the solution of Nonlinear 
Programming (NLP) problems. 
 
A complete framework was presented [4] for solving nonlinear constrained optimization 
problems, based on the line-up differential evolution (LUDE) algorithm which was 
proposed for solving unconstrained problems. The LUDE algorithm is an iterative 
stochastic methodology that starts with a random population of possible solutions. The 
fitness of each solution is measured by computing the corresponding value of the 
objective function. Then new generations are produced by lining up the solutions 
according to their fitness and applying the LUDE crossover and mutation operators.  
The positions of the solutions are very important, since they determine to what extent 
the crossover and mutation operators are applied to each solution. Constraints are 
handled by embodying them in an augmented Lagrangian function, where the penalty 
parameters and multipliers are adapted as the execution of the algorithm proceeds: 
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where am and bk are positive penalty parameters, and the corresponding Lagrange 
multipliers pm and qk are positive as well. In the above equation ( )f x is the objective 

function to be minimized, while Mlhm ,...,1,0)( ==x  and Kkg k ,...,1,0)( =≥x   

are the equality and inequality constraints respectively.        
The efficiency of the proposed framework was illustrated by solving numerous 
optimization problems and comparing the results with those obtained by other 
evolutionary techniques that can be found in the literature.  Some of the results and 
comparisons with other techniques are presented in Table 1, where the superiority of the 
proposed algorithm is illustrated. The complete optimization problems are not shown 
here due to space limitation but can be found in Ref. [4]. 

 

Development of an evolutionary algorithm for the solution of MINLP problems. 
 
In its most generic formulation, an MINLP problem can be described as a mathematical 
system, consisting of a nonlinear objective function and a number of equality or 
inequality constraints, where both continuous and integer variables are involved. If we 
assign specific values to the integer variables, the problem is transformed to an NLP 
problem, where the integer variables are no longer decision variables. 
 

                    



 

                                                                                  

 

 

Table 2. Comparative results for a number of benchmark problems 

 

The main goal of the proposed algorithm is the efficient selection of values for the 
integer variables. The algorithm has been named “GATSA” as an acronym of the words 
Genetic Algorithms, Tabu Search and Simulated Annealing, since we have adopted 
characteristics from all three stochastic methods [5]. Each selection of values for the 
integer variables is accompanied by the solution of the nonlinear problem that is 
formulated. When a solution is obtained, the algorithm first checks if it satisfies any of 
the termination criteria. If not, the procedure is repeated by mutating the current solution 

Ex..

# 
 

Exact Solution Proposed 

Algorithm 

HHE-MUM-

APP 
TPEP    Hybrid EP EP alone 

 fmin 0.25000 0.25000 0.25000 0.25000 0.83636 0.24510 

1 Er 0 0.0 0.0 0.0 Diverged 0.0049 

 N - 2250* 796* 4658 7667 5014 

 fmin -5.50801 -5.50801 -5.50801 -5.50801 -5.42623 -5.51096 

2 Er 0 0.0 91014.1 −⋅  0.0 0.08178 diverged 

 N - 41400* 52615* 3659 8081 4392 

 fmin -6961.81388 -6961.81388 -6961.81388 -6961.81388 Diverged 1033.13591 

3 Er 0 0.0 9109.7 −⋅  0.0 Diverged diverged 

 N - 78450* 223455* 21739 Diverged 14049 

 fmin 5.00000 5.00000 5.00000 5.00000 5.00000 4.99800 

4 Er 0 12100.3 −⋅  0.0 0.0 Diverged 0.002 

 N - 31200* 32343* 19139 13130 78851 

 fmin 1.00000 1.00000 1.00000 1.00000 Diverged 0.99559 

5 Er 0 0.0 0.0 0.0 Diverged 0.00441 

 N - 48150* 123191* 3730 Diverged 4251 

 fmin 0.05400 0.05400 0.05395 0.05400 Diverged 0.43321 

6 Er 0 13108.1 −⋅  9105.1 −⋅  81015.2 −⋅  Diverged diverged 

 N - 125700* 271023* 11210 Diverged 1448 



 

                                                                                  

 

using standard operators. These are based on the random selection of some of the integer 
values and the modification of their values. According to the specific problem, we may 
give a different possibility of selection to each possible value, which may be adapted as 
the algorithm proceeds. In order to guarantee that the integer vector that is selected for 
the next iteration is not coinciding with any of the integer vectors that have been used so 
far, the algorithm retains a tabu list. Ideas from the simulating annealing method have 
been adopted, by giving the algorithm the ability to accept a solution even if it does not 
modify the objective function towards the desired direction. The possibility of accepting 
such a solution is reduced, as the algorithm proceeds. The method was applied with 
success to the optimal design of chemical processes and the results can be found in [5].  
 
 

Application of the new stochastic methods on the solution of large-scale 
optimization problems  

 
a) The LUDE algorithm was applied for the solution of complex non-convex model 
predictive control problems. The complexity was increased, by formulating 
multiobjective optimization problems. One of the goals was to test the efficiency of the 
MPC method cases where sudden changes in the dynamic behavior are observed.  Two 
examples were tested. The first concerns a single input singe output (SISO) system, 
while the second is a multi input multi output (MIMO) system with two input and two 
output variables. In both systems we initially change the set points of the controlled 
variables. At a specific time instance a sudden change in a system parameter occurs and 
the algorithm is asked to keep the controlled variables as close as possible to the desired 
values. The first objective to be satisfied is the persistent excitation condition, and next 
the proposed framework minimizes the rest of the objective functions, which are 
positioned in a priority list according to their importance. 
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Figure 1. Responses of the input and output variables in the first example, where a 

sudden change in the dynamics of the system happens in time instance 15. 
Comparison with the standard MPC methodology. 
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Figure 2. Responses of the two controlled variables in the second example.  

Comparison with the standard MPC methodology. 
 
In both examples it is shown that the utilization of the proposed evolutionary algorithm 
for the solution of the optimization problems is successful, since it manages to 
determine the values of the manipulated variables that can drive the system to the 
desired set point. It should be mentioned that the traditional optimization techniques that 
were tried for the solution of the same problems did not produce successful results in 
acceptable times. 
 
b) The hybrid algorithm that was developed for solving problems where continuous and 
integer variables are involved, was used for finding the optimal schedule in a lube 
production plant. The efficiency of the algorithm gave us the ability to increase the 
number of periods in which the future production horizon is partitioned, by increasing 
proportionally the number of binary variables. This resulted in the calculation of more 
flexible schedules that improved significantly the value of the objective function. As an 
example, the following table is shown that presents the solution to the same scheduling 
problem, using 6,12 and 24 periods. 
 
 

Sales (tn) 6 periods 12 periods 24 periods 
1  0.0 0.0 0.0 
2  607.8 607.8 607.8 
3  1646.4 1636.3 1636.3 
4  507.0 507.0 536.3 
5  0.0 308.0 132.5 
6  616.0 616.0 770.0 

Total profit(€) 
 

768,935 
 

 
1,062,161 

 

 
1,076,600 

 
 

Table 2. Results on the optimal lube scheduling problems using different time partitions. 



 

                                                                                  

 

 

Conclusions 
 

During this project new stochastic methodologies were proposed for solving NLP and 
MINLP problems. The methodologies were tested on both benchmark problems that can 
be found in the literature and large-scale problems.  They proved successful with respect 
to both accuracy and required time for convergence. Thus the methods that were 
developed can be used as robust and reliable approaches for facing non-convex and/or 
non-continuous constrained optimization problems, which are difficult to solve by 
traditional optimization algorithms. 
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