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1. Introduction

Structures such as nuclear reactors, aircraftigasme propulsion engines, etc., operate
in high levels of loads and temperature. It is e8ak therefore, for the design of these
structures to predict the inevitable accumulatibmelastic strains throughout their life.

The complete response of a structure, which isestdql to a given mechanical loading
and exhibits inelastic time independent (plastic)l anelastic time dependent (creep)
behaviour, is quite complex. The reasons of comiylexre the laborious and often
numerically unstable time stepping calculationg tieeve to be performed following the
exact loading history. If one is only interestedy&i an estimation of the strength of the
structure, direct methods provide a much bettasraditive. These methods seek the
steady-state solution right from the start of théwglations. Among these methods are
the limit and shakedown analysis of structures.

In this work a direct method, already used for pré8piliopoulos [1]), is being
developed for the plastic cyclic loading analydistouctures.

2. Existing Direct Methods

The first part of the work consists of the examoatand extensions of existing direct
methods. These methods are based on the upper libaocem of the theory of
plasticity. Two classes of methods are examineadisehbased on mathematical
programming formulations and those based on aatiter method that continuously
updates the modulus of elasticity.

2.1 Methods based on mathematical programming

A structure, e.g. a plane structure is divided iato adequate number of elements,
whose common edges may serve as possible yielsl dhthe structure. Every possible
collapse mechanism of the structure may be destrilye the velocity rate of the
horizontal and perpendicular component of displaa@non the yield line (Spiliopoulos
and Politis [2]). The collapse mechanism is kinacadlly acceptable if the adjacent to
the yield line elements may be separated eithgetatrally or perpendicularly or finally
by a combination of both. The perpendicular andyeatial relative velocity between
elements i and j which are separated by the hmeare described through the



displacement rate of the two elemeants v;, u; andv; andare given by the following
relation:

e, =—(U-{y) sin+(¥,—V)-cosu (1)
& =(U-Yy) cos+(V,—V)-sina 2)
a is the angle between the horizontal principle axid the common edge, (Fig. 1).

Grouping all the above kinematical equations foitteé elements which constitute the
structure we may obtain the following matrix eqaas:

Figure 1. Plasticity lumped along common edges.

e =B, -d (3)

et:Bt'd (4)
The vectorse, and ¢ contain the vertical and tangential rates of tldative
displacements. The vectdr contains the rate of the displacements.

Along the plasticity linem the von Mises yield criterion as expressed fornela
structures is used:

F=Gr2n+3'T§,l=Gy2 (5)
whereo,, is the normal stress,, is the shearing stress along a yield line apds the
yield stress of the material.

If we replaces,, =X, \/§-rm =Y ando, =R the above equation is transformed to an

equation of a circle whose center lies at the starthe principal axes,, andt,, .

Instead of using the full circle one may use thewnscribed polygon. It can be easily
shown that the linearized yield criterion can bpressed by the following equation:

F :cosq-cm+\/§-sinq-rm=cy (6)
with a, = 2- k-n, k=12,....,K, [3:7%( , K is the total number of the sides of the

circumscribed polygon.

In the case of énearized yield criterion the components of the plastic flow rate on the
sides of the linearized equation are obtained figréintiating the above equation:



ﬁ:)‘\"?n.cosak, etm:)\‘:n%:\@x'ﬁnsmak (7)
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A straight derivation by differentiating (5) is almed when maintaining the non-linear

criterion in its proper form:
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2.1.1 Governing equations

The rate of the work produced by the external femghich act on the structure is :
W=p-f -d (9)

wherey is the load factor anfl is the vector of the external loads.

The rate of dissipation of the plastic work alohg tommon lines of adjacent elements
Is given by the relation:

D - i-“;m (Gm 'ém +tm"‘Ym)d| m= i.‘:m (G r'ﬂ'.en,m—‘f_’c m'.e tn*)dl m (10)
m=1 m=1

wherel  denotes the length of a common edge, M is the taiaiber of the common
edges. With either a linearized yield criterion arnon-linearized one, the above
equation becomes (11) or (12) respectively:

D=ij;m(cm-‘en’m+tm-étvm)d|mzcyiikk A, (11)
m=1 k=1 m=1

Dzij-;m(csm-'en,m+rm-'et,m)dlm: 262> Al (12)
m=1 m=1

Equating (9) to either (11) or (12) and requiritg extra constrairtt -d =1, so that
plastic mechanisms may exist, the problem is cdadeto either a linear (13) or a
nonlinear (14) mathematical programming problem:

K M| ) ) M.
Min uzcy-ZZX':n-lm Min p=2 -c, -mewm
k=1 m=1 m=1
Subject teg, -B,,-d=0 Subject tog, -B,-d=0
6-B.-d=0 (13) &-B,-d=0 (14)
f_T'd: 1 Gm2+3'Tm2:Gy2
A> 0 fld=1
A= 0

2.1.2 Solution of the mathematical programs

A critical issue is the amount of computing time tbe solution of any of the two
programs described above. Non-linear optimizatechhiques are used in this work
(Corn et al. [3]), even for the linear program,cgirwhen using a good starting solution
we get a quick convergence. In an alternative swiutmethod for the linear



programming problem (13), the simplex method, desfis convergence in a finite
number of steps, a lot of extra (artificial) vated must be introduced, for its solution,
at the expense of extra computing time.

2.2 Methods Using Linear Elastic Solutions With a Spatially Varying Elastic
Modulus

These methods (Ponter and Carter [4]) are alsodbasethe kinematical theorem of
plasticity and produce a sequence of lower bourideaaeasing accuracy. The main
essence of these methods is to adjust the elasticiles within a finite element scheme
so that the stresses are brought within the yielttlition at a fixed strain distribution.
The elastic problem is then resolved using the sigatial distribution of elastic moduli.
At each stage, a lower bound on the limit load lsarfiound by scaling the solutions so
that the stresses lie within yield for the currelastic solution. Experience has shown
that a monotonically increasing sequence of loveemidls is usually obtained. The steps
of this method may be roughly summarized as follows

1. The structure is discretized and all boundary dionis and external loading are
applied to it. The elastic properties of the matlesire used except for the Poisson’s
ratio which is set to a value near 0.5 so thatthgerial is incompressible.

2. The structure is then solved elastically and thiesses at each element’'s Gauss
point are computed. The values of internal andreatevork are calculated.

3. Young’s modulus is updated at each element’'s Gpas# according to relation
(15) and recalculation of the structure’s stiffnesstrix takes place.

Evlza B2 (15)
G(Gij)
4. Compute the rate of internal work in respect deexal work (21).
e sk gV j g<.gk.dv
kK -[V Gu 8” _ Z ) v ij ij
PUB_ B - k.dSQFt(B_\/;O-Y —lrlde (16)
[B-u P

5. Check if tolerance is acceptable or else retui'tstep.
wherea(éﬁ) is an equivalent stress value that may or mayroeed the yield stress.

3. Numerical example-limit analysis

The procedure is applied to the limit analysis &fqaare plate with a circular hole of
diameter of 1/10 of the side of the square.The dsioas of the plate are 20m x 20 m x
1m. Two uniformly distributed loads parallel to therizontal and to the vertical axes
having a maximum value equal Ri=P2s, are applied at the far ends of the plate.

Due to the symmetry of the problem, only a quasfahe plate was discretized with 98
quadrilateral elements (Fig.2). The sequence ofihgad the following: First P1 is
applied as a whole with its maximum value. AfteattHoading P2 is augmented every
time by 10% of the maximum value until it also fees its maximum value. P1 is then
decreased by portions of 10% of its maximum valutd i is zeroed.

It can be seen from Fig.3 that there is little eli#nce in the results of the two programs
(13) and (14). It must be noted, neverthelessttteahon-linear program (14) uses fewer



amounts of variables and constraints and therefi@exls less computing time. The
program (13), however, seems to converge from tayirsy point (e.g. null variables).
This is not the case for the program (14) for wisome of the variables may be chosen
so as to satisfy the yield constraint in an arbjtraay, i.e. all the normal stresses are
put equal tos, and all the other variables are zeroed.
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Figure 2. Finite element discretization of the plate.

Results were compared (Fig. 3) against a time-gtgpprogram (Hibbit et al. [5])
which uses an arc-length method.  The same disciietizavas employed for both
methods but the running time was approximatelyi8@s less for the direct methods.
The difference in the value of the limit load as pamed with the one of the time-
stepping procedure varied between 3.7% and 12.096.discrepancy is expected due
to the fact the direct method pre-assumes a calapsde along the edges of the
elements whereas the time-stepping method takesastount plastification inside the
elements. This discrepancy is expected to decreisenare refined discretization.
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Figure 3. Results for the plate problem.
4. Numerical example-cyclic loading

The previous problem was solved under the cyclicatian of the two end loads that
appear in Fig. 4, using Hibbit et al. [5]. Steatytes results of equivalent plastic strain
can be seen in Fig.4. Results of this analysiseapected to be compared to the ones
using the method under development, which is ptedean the next section.
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Figure 4. (a) Loading variation through time, (b) Equiv. plagtag at elem. 1 at Gauss point 1

5. Direct method using Fourier series

A direct method (Spiliopoulos [1]) that may be usedcyclic loading analysis is

proposed, which currently is under testing. The hoetis based on the Fourier
decomposition of the residual stresses which devaluler plastic behaviour and are
expected to be also cyclic:

N

p(t) = +Z(ak cos@ b, nz?k’“j (17)
k=1

where T is the period of the cycle.

The various coefficients of the Fourier series mayfdund in an iterative manner by
satisfying equilibrium and compatibility at timeipts inside the cycle. It turns out that
if both conditions are satisfied at a time poirgide a cycle, the time derivative of the
residual stress may be calculated from the follgvagquations:

Ki =R+ j B'D:"dV (18)
V
p=D(e—¢-¢") (19)

whereK is thestiffness matrix of the structuré,and¢” are the total and the plastic
strains respectively® are the strains assuming elastic behaviour Ryidare the rates
of loading and of the residual displacements respy.
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