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Introduction 

We study resonance capture phenomena leading to energy pumping in systems with multiple 
degrees-of-freedom (DOF), composed of N linear oscillators weakly coupled to strongly 
nonlinear attachments possessing essential (nonlinearizable) cubic stiffness nonlinearities. First 
we present numerical evidence of energy pumping in the systems under consideration, i.e., of 
passive, one-way (irreversible) transfer of externally imparted energy to the nonlinear 
attachments, provided that the energy is above a critical level. By introducing an approximation 
based on Jacobian elliptic functions we derive an approximate set of two nonlinear integro-
differential modulation equations that govern the time evolution of the amplitude and phase of 
the motion of the attachment. In addition, we study the possibility of multi-frequency nonlinear 
energy pumping simultaneously from multiple linear modes through the use of multi-DOF 
nonlinear attachments. 

 

2. Formulation of the Problem and Numerical Evidence 

The system under consideration is a finite chain of N particles with linear grounding stiffnesses, 
undergoing linear next-neighbor interactions. The chain is coupled at its right boundary to a 
strongly nonlinear, weakly damped oscillator (attachment). We wish to study the nonlinear 
interaction of the chain with the attachment, and, in particular, nonlinear energy transfer 
exchanges resulting from this interaction. The set of equations governing the dynamics is as 
follows, 
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where nu  denotes the displacement of the n-th particle of the chain, v the displacement of the 

nonlinear oscillator, α the coupling between particles of the chain, β the damping coefficient of 
the nonlinear oscillator, and ω0

2 the stiffness of the on-site (grounding) quadratic potential. The 
perturbation parameter 0<<ε<<1 scales the weak coupling between the chain and the nonlinear 
oscillator, and the parameter C denotes the strength of the essential (nonlinearizable) stiffness 
nonlinearity. As usual, dot denotes differentiation with respect to time, and the particles are 
assumed to be of unit mass. To analyze the nonlinear interaction between the attachment and the 
chain in (1) it is instructive to initially compute the approximate instantaneous frequency of the 
nonlinear oscillator during the motion [1]. 

  

A numerical computation based on a two-DOF chain (N=2) demonstrates some important issues 
of the chain-attachment interaction. In Fig. 1 we depict the transient responses and the 
approximate instantaneous frequency Ω(t) of the nonlinear oscillator for a system with 
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parameters α = 1, ω0 = 1, β = 2, C = 3 and ε = 0.1. We used zero initial conditions except for 
=)0(1u& Y; these initial conditions correspond to impulsive excitation at t = 0 of the farthest from 

the attachment oscillator 1. For Y = 5.6 no significant nonlinear interaction between the chain 
and the attachment takes place, and most of the induced energy of vibration remains in the linear 
part of the system, where it is originally generated. However, by increasing the initial condition 
to Y = 8.6 strong energy transfer to the nonlinear attachment is observed.  

The enhanced nonlinear interaction as energy increases can be better understood by considering 
the plots of Figure 1d, depicting the variation of the instantaneous frequency Ω(t) of the 
nonlinear attachment for the two aforementioned cases of impulsive excitation. Indeed, for the 
lower level excitation Ω(t) does not reach the neighbourhood of the natural frequencies of the 
linear chain, and , as a result no resonance interaction (capture) between the attachment and the 
chain can occur. By contrast, for the case of higher impulsive excitation the instantaneous 
frequency of the nonlinear oscillator reaches the neighborhood of the smallest natural frequency 

1ω  of the linear chain giving rise to 1:1 resonance capture [1]. By this we mean the transient 

internal resonance between the attachment and the chain in a small neighborhood of a 1:1 
resonant manifold of the dynamics [2-5]. Hence, the nonlinear attachment engages in a 1:1 
transient resonance interaction with the lowest mode of the linear chain, during which one-way 
transfer (pumping) of energy to the attachment takes place. 

By increasing the magnitude of the impulse to Y = 25, there occurs a resonance capture cascade, 
whereby the attachment transiently resonates with both modes of the linear chain in sequential 
order. This can be concluded from the frequency plot of Figure 2, where it is seen that the 
instantaneous frequency Ω(t) of the nonlinear oscillator first reaches the neighbourhood of the 
natural frequency of the higher, anti-phase mode of the linear chain, and then makes the 
transition to the neighbourhood of the natural frequency of the lower, in-phase mode. Damping 
dissipation is the mechanism that reduces continuously the overall energy of the system and 
induces the frequency transitions.  

3. Analytical Treatment of Transient Resonance Interactions 

We now perform an analytic investigation of the transient resonant interactions of the nonlinear 
attachment with the modes of the linear chain. First, we consider the chain and consider the force 
exerted by the coupling stiffness to be a pseudo-forcing term. We then obtain a single essentially 
nonlinear, damped integro-differential equation that governs exactly the transient dynamics of 
the nonlinear attachment: 

, ,3
, ,

1 1 1 1

, ,2

1 0

(0)
(0)cos( ) sin( )

( )sin ( )

= = = =

=

+ + + = + +

−

∑∑ ∑∑

∑ ∫

&
&& &

N N N N
i N i k k

i N i k k i i
i k i k i

tN
i N i N

i
i i

u
v Cv v v u t t

v t d

φ φ
ε β ε ε φ φ ω ε ω

ω

φ φ
ε λ ω λ λ

ω

                      (2) 

This equation is solved with initial conditions (0)v  and (0)&v . Hence, we have reduced the 
problem of nonlinear interaction of the chain with the nonlinear attachment to a single integro-
differential equation. To analyze resonance capture and energy pumping from the N-DOF chain 
to the attachment, we transform the nonlinear integro-differential equation (2) into a set of two 
first order nonlinear integro-differential equations that govern the time evolution of the 
amplitude and phase of the motion of the attachment. For this purpose we consider (2) to be in 
the form of a nonhomogeneous nonlinear differential equation in order to apply the method of 
variation of parameters. We first consider the solution of the homogeneous problem, 

3 0v Cv+ = ⇒&& ( )( ) 4 1/ 2 ;1/ 2 = +
 

v t A cn A C t K ξ                                                        (3) 
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where A and ξ denote arbitrary constants, and ( )1/ 2K  is the elliptic integral of the first kind. 

Applying an ‘elliptic’ version of the method of variation of parameters [5-10], we seek the 
solution of the inhomogeneous differential equation (10) in the form, 

( ) ( ) ( ( ) 4 ( ) ; )v t A t cn A t C t K t kξ= +                                                                         (4) 

where )(tA  and )(tξ  are new unknown, slowly varying amplitude and phase functions, 
respectively. In writing (4) we partition, in essence, the dynamics into fast and slow varying 
components, at the original time scale t  and at a time scale tαε  ( 0a >  to be determined), 
respectively. The plan is to average out the fast dynamics, and to confine the analysis to the 
slowly varying dynamics (the slow flow) where information on the attachment – chain nonlinear 
interaction is contained. The slowly varying amplitude and phase functions are governed by the 
following set of modulation equations: 
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We note that both derivatives are of ( )O ε , indicating that indeed the amplitude and the phase are 
slowly varying functions. 

We simplify the problem by using the following Fourier expansion for the elliptic cosine,  

( )2 / 0.955cos 0.043cos3 coscn Kθ π θ θ θ= + + ≅L                                                               (6) 

and approximating the response of the nonlinear attachment by, 

( ) ( )cos ( )v t A t tθ=                                                                                     (7) 

where the angle variable is defined as, 
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Expressing the modulation equations (5) using the approximation (6) and the new angle variable, 
we obtain the following approximate modulation equations governing the slow flow of the 
system: 

2

s in ( )
( ; )

2 ( )

( ) co s ( )
( ; )

2 2 ( ( )

d A t
f t

d t K A t C

d C A t t
f t

d t K K A t C

π θ
ε ε

θ π π θ
ε ε

= −

= −

                                                         (8) 

20 40 60 80 100 120 140

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

    

20 40 60 80 100 120 140

-4

-2

2

4

 

(a)                                                (b) 

 

t 
t 



 4 

20 40 60 80 100 120

-4

-2

2

4

     20 40 60 80 100 120 140

0.5

1

1.5

2

2.5

3

 

(c)                                              (d) 

Figure 1. Numerical transient responses of the two-DOF system with nonlinear attachment: (a) v(t), (b) 
u2(t), (c) u1(t), (d) Instantaneous frequency Ω(t); __________ Y = 5.6; ---------- Y = 8.6. 

From (8) it directly follows that 
dt

dA
 is of order O(ε) and 

dt

dθ
 is of order O(1). The modulation 

equations approximately govern the amplitude and phase of the nonlinear attachment as it 
interacts with the modes of the linear chain. We stress that since we omitted terms of 3( )O ε  

from (8), it is expected that their (transient) solutions will be valid only up to times of 2(1/ )O ε . 
We first establish the accuracy of the approximate modulation equations by computing the 
response of the attachment by (8), and comparing it to direct numerical simulations of the 
original equations of motion (1). For this comparison we employ a two-DOF linear chain (N = 2) 
with a nonlinear attachment at its end, and parameters α = 1, ω0 = 1, β = 2, C = 3, ε = 0.1; all 
initial conditions were taken as zero, with the exception =)0(1u& u. 

 
Figure 2.  Instantaneous frequency Ω(t) of the two-DOF system for Y = 25. 

  

   (a)                             (b)     

Figure 3. Approximate transient response of the nonlinear attachment: (a) Amplitude A(t) for initial 
conditions u = 5.6 -------------, and u = 8.6 ____________ ; (b) Phase difference for initial condition u = 8.6. 

 

In Figure 4 the approximate amplitude A(t) and phase y(t) = θ(t) – ω1t (where ω1 is the lower 
natural frequency of the linear chain) are depicted for a system with initial conditions zero except 

=)0(1u& u. Of interest is to examine the transient evolution of the phase difference y(t) for the 
case when resonance capture (and energy pumping) occurs (u = 8.6, Figure 4b). We divide the 
evolution of y(t) into three phases. In the first phase when resonance capture occurs there is a 
small-amplitude fast oscillation of y(t) about a slowly-varying mean, indicating that when 

t 

t 
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resonance capture occurs in the neighborhood of a natural frequency, there occurs a slow 
variation of the phase of the nonlinear attachment in the neighborhood of the linearized natural 
frequency of the resonant mode. In the second phase a rapid transition of y(t) occurs away from 
the resonant natural frequency, and in third phase y(t) is observed to perform small-amplitude 
oscillations about a small mean value. A perturbation analysis carried out [8] proves that in the 
third phase of the response the nonlinear attachment oscillates with a frequency equal to 

( )21 / 4−ε εβ  and effective damping ratio equal to / 2=ζ βε . This result is consistent with the 

numerical instantaneous frequency simulation depicted in Figure 2. 

 

4. A New way for Multi-Frequency Nonlinear Energy Transfer [9,10] 

Our next research aim is to study if by using MDOF nonlinear attachments it is possible to 
extract simultaneously energy form multiple linear modes, through simultaneous dynamic 
(resonance) interactions of multiple nonlinear normal modes (NNMs) of the attachments with 
multiple modes the linear system. 

In an attempt to answer this question we modify the attachment-linear system configuration, by 
considering the system of figure 4, composed of a two-DOF linear system, weakly connected to 
a three-DOF essentially nonlinear attachment. 

 
Figure 4. The multi-DOF system under Consideration 

 

The system under consideration is governed by the following system of equations: 
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The multi frequency nature of the energy transfer to the nonlinear attachments becomes apparent 
by studying the frequency-time plots depicted in Figure 5. 
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(a)           (b) 
Figure 5. Wavelet analysis of the transient responses of the nonlinear subsystems of the coupled system 
(frequencies in Hz).(a) Z3(t)____ ,(b) Z2(t)____ 

These results indicate that MDOF essentially nonlinear attachments can extract energy from 
linear systems in multi-frequency fashion, through simultaneous dynamic interactions of 
multiple modes of the nonlinear attachments with multiple modes of the linear system.This form 
of multi-frequency energy exchange is different than the resonance capture cascades encountered 
in previous works, where energy extractions to SDOF nonlinear attachments occurs in a 
sequential manner. 
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