
THALES Project No. 65/1311

Systematic Selection of Parameters in the development of
Feedforward Artificial Neural Network Models throug h

Conventional and Intelligent Algorithms

Research Team

G.-C. Vosniakos, T. Giannakakis, A. Krimpenis, P. G. Benardos

National Technical University of Athens, School of Mechanical Engineering,
Manufacturing Technology Division

1. Introduction

Feedforward artificial neural networks (ANNs) are currently used in a variety of
applications (Figure 1) with great success. The reason behind this widespread adoption
can be found in two very important abilities that they exhibit. ANNs can be trained to
learn through examples (memorization ability) and can respond to cases that are similar
but not identical to the ones that they have been trained with (generalization ability).

Figure 1. Applications of ANNs

The building block of a feedforward ANN is called a neuron, its mathematical model
shown in Figure 2a. Each neuron, receives input in the form of weighted signals (where
p is the input signal matrix and W is the weight coefficient matrix), sums them along
with a bias term and applies a function f, called activation function (usually non-linear),
to determine its own output signal, denoted by y.

A typical feedforward ANN is composed of several such neurons, which are arranged in
layers as depicted in Figure 2b. The mathematical notation used is also given.

ANN

SIMULATION

MEDICINE

FINANCE

ROBOTICS

IMAGE
PROCESSING

CONTROL

SIGNAL
PROCESSING

PATTERN
RECOGNITION

Figures 2. Mathematical model of (a) a typical neuron and (b) typical feedforward ANN

xi: output signal of the i-th neuron in the input layer

k j: output signal of the j-th neuron in the hidden layer

y: ANN’s output signal

IW j,i : weight coefficient between the i-th input neuron and the j-th hidden neuron

bj: bias of the j-th hidden neuron

LW 1,j: weight coefficient between the j-th hidden neuron and the output neuron

by: bias of the output neuron

tansig(x): hyperbolic tangent function

i=1,2,…,n and j=1,2,…,m

The development of a feedforward ANN model involves several stages, from gathering
the necessary data to creating a satisfactory model (Figure 3). The most important
aspect of this process is the selection of certain parameters that are crucial for the
model’s performance, notably the number of hidden layers and neurons. Since there is
no theoretical method to determine the appropriate architecture, a trial-and-error
repetitive procedure is involved that is both time-consuming and with uncertain results.
The outcome is mainly based on the experience of the researcher regarding ANNs and
the studied phenomenon.

Figure 3. Development of an ANN model

(a) (b)

Data
collection

Data pre-
processing

Selection
of

Training
Algorithm

Selection of
TA

parameters

Selection of
ANN

parameters

ANN
training

Performance
checking

Satisfactory
ANN model

w1,1

1

1
y=f(Wp+b)

Σ

b

p2

p3

p4

pn

w1,2

w1,3

w1,4

w1,n

f y

Xn
IWm,n

IW2,n

Km

X2

X4

X3

X1

bm

K2

b2

IW1,1

IW2,1

K1

b1

LW1,1

LW1,3

LW1,2

Y

1

by

1

The present work attempts to deal with the above problem by developing a systematic
way to select such parameters. The emphasis is placed on two phases of ANN model
building, namely the initialization of the network’s weights and the determination of the
most suitable architecture.

2. Initialization of weight coefficients

Every training procedure starts by initializing the weight coefficients, i.e. by assigning
values to them. The training’s goal is to find the weight values that minimize the
network’s error function. Since the initial values of the weights define the starting point
of the training algorithm on the error function, they affect both the training speed and
the achieved training error. This depends on whether this point is close to the global
minimum or located in an area with many local minima. The most common methods
used to initialize the weights are either to randomly select values from a predefined
value field (usually centered around zero) or to use a statistical distribution (usually the
Gaussian or uniform distribution). Pre-processing of the training data (normalisation,
scaling etc) is also used in conjunction with these techniques.

2.1 The approach

The approach adopted is a combination of analytical and random calculation of weight
values. Referring to Figure 3, the network’s output is calculated below:

ymm bkLWkLWkLWy +⋅++⋅+⋅= ,,, ... 1221111 (1)

The output of each hidden neuron is in turn given by the following equation:

)...(tan ,22,11, jnnjjjj bxIWxIWxIWsigk +⋅++⋅+⋅= (2)

If a multiple linear regression is performed on the training data then the resulting
analytical model would be:

0
1

22110 ... axaxaxaxaay
n

i
iinn +⋅=⋅++⋅+⋅+= ∑

=

 (3)

Comparing equations 2 and 3, it is concluded that the argument of the hyperbolic
tangent function can be replaced by the analytical model of the multiple linear
regression. This is accomplished if:

0abkj = (4)

iij aIW =, (5)

The remaining weights between the hidden and the output layer and the respective bias
are initialized randomly so that the starting point of the training algorithm is slightly
different each time the training is repeated.

2.2 Results

The approach was tested by comparing its results to the Nguyen-Widrow method. Data
originating from a bar turning process were used to develop an ANN model and the
number of required epochs and achieved training error (mean squared error – MSE)
were examined. Three different architectures were investigated, namely 5x10x1, 5x6x1,
5x3x1, and the training results are given in Table 1.

Training
no.

Epochs
MSE

Training
Error

Epochs
MSE

Training
Error

Epochs
MSE

Training
Error

Initialization
type

1 1466 1,43E-25 2325 1,15E-29 5000 1,26E-06 N-W
2 734 1,54E-28 3441 2,07E-28 5000 1,60E-06 N-W
3 670 1,78E-29 10000 2,45E-07 1675 2,69E-06 N-W
4 618 2,24E-25 9377 1,95E-26 5000 6,90E-07 N-W
5 1753 8,30E-26 1397 3,79E-24 5000 1,06E-06 N-W
6 765 7,63E-28 10000 3,91E-08 5000 8,38E-07 N-W
7 983 5,90E-24 2565 1,37E-26 612 8,10E-07 N-W
8 2155 1,11E-27 2612 1,92E-28 5000 7,69E-07 N-W
9 256 1,27E-31 1701 6,85E-28 5000 9,13E-07 N-W
10 1139 4,74E-24 10000 3,23E-07 5000 1,60E-06 N-W

1,11E-24 6,08E-08 1,22E-06

Training
no.

Epochs
MSE

Training
Error

Epochs
MSE

Training
Error

Epochs
MSE

Training
Error

Initialization
type

1 915 5,61E-31 2351 4,97E-27 6393 1,03E-06 MLR
2 686 1,72E-31 1473 1,25E-30 6576 1,03E-06 MLR
3 750 1,67E-28 2294 2,81E-29 6510 1,03E-06 MLR
4 1328 8,47E-26 1666 3,74E-30 10000 6,94E-07 MLR
5 1004 5,54E-31 957 3,73E-29 10000 8,28E-07 MLR
6 985 1,86E-26 2147 1,09E-30 6752 1,03E-06 MLR
7 1032 2,12E-26 926 6,32E-28 6990 1,03E-06 MLR
8 899 2,52E-28 996 7,54E-31 10000 8,28E-07 MLR
9 903 1,04E-28 1926 2,50E-30 10000 8,28E-07 MLR
10 1860 3,71E-31 1019 8,82E-29 7030 1,03E-06 MLR

1,25E-26 5,76E-28 9,34E-07

5x10x1 5x6x1 5x3x1

5x10x1 5x6x1 5x3x1

Table 1. Initialization method results

It is observed that there is improvement in both of the examined parameters, which is
proportionately higher to the complexity of the architecture.

3. Determination of ANN’s architecture

An ANN’s architecture is directly related to the complexity of the solution space that it
represents. A network that is fairly simple might not be able to learn the interactions
underlying the training data, while a very complex network will memorize them to such
extent that it will no longer be able to respond to unknown data. Obtaining the right
architecture is the most crucial stage in the development of an ANN model and given
that there is no theory as to what this architecture is or how to obtain it, it is also one of
the most difficult stages to perform. Current practice involves a trial-and-error
approach, but there are a lot of research efforts involving the use of evolution
algorithms as well as constructive/deconstructive analytical techniques that try to
address this problem.

3.1 The approach

If the described problem is viewed as a problem of multi-parametric optimization, then
a genetic algorithm can be used. The aim is to find the appropriate architecture, i.e. the
number of hidden layers and the number of neurons in each one of them, which results
in an ANN model with good performance. In order to satisfy this, criteria that quantify
the performance of the model are developed and are consequently integrated in the
objective function to be minimized. These criteria are:

i. Training error criterion

n

Y

YY

E

n

i o

o

training

i

ii∑
=

−

=
1

, where Etraining : training error,
ioY : target value of the i-th training data vector,

i
Y :

ANN’s response to the i-th training data vector and n: number of training data

ii. Generalization error criterion

n

Y

YY

E

n

i o

o

tiongeneraliza

i

ii∑
=

−

=
1

, where Egeneralization: generalization error,
ioY : target value of the i-th testing data vector,

i
Y : ANN’s predicted value for the i-th testing data vector and n: number of testing data

iii. Feedforward architecture criterion

1 , 1 hidden layer and m≤10

1+(m-10)*0.1 , 1 hidden layer and m>10

FFAC = 2 , 2 hidden layers and m≤10 and n≤10

2+(m-10)*0.1 , 2 hidden layers and m>10 and n≤10

2+(m-10)*0.1+(n-10)*0.2 , 2 hidden layers and m>10 and n>10

, where m and n: number of neurons in the 1st and 2nd hidden layer respectively

iv. Training speed criterion

>

<
=

10,1

10,5.1

epochs

epochs
trspeed

v. Solution space consistency criterion

yxsolspc ++= 33.0*1

, where x: number of test cases that the absolute value of the relative error is in the
interval [15,25] and y: number of test cases that the absolute value of the relative error
is in the interval (25, ∞)

3.2 Results

Using the same data as for the initialization method testing, the developed method was
compared to the results of an experienced researcher that followed the trial-and-error
approach. The model achieved by an experienced human analyst was 5x3x1.

The best objective function value versus the number of generations is shown in Figure 4
and the number of neurons in each layer is given in Table 2.

Figure 4. Best objective function value history Table 2. Number of neurons in each

 hidden layer

As can be seen from the above table, the developed methodology performs as well as a
human expert, but at the same time it offers advantages such as no required experience,
shorter development time and systematic selection of the network’s parameters.

4. Conclusions

By using the described methodologies, the development of an ANN model is facilitated
and, more importantly, it is carried out following a systematic procedure, rather than a
repetitive trial-and-error procedure with uncertain results. In both fields (weight
initialization and architecture determination), the results show an improvement over
current practices. Furthermore, in the latter case, the focus is primarily on the
generalization performance of the ANN and network size, which guarantee accurate and
consistent model predictions.

Publications

1. “Initialisation improvement in engineering feedforward ANN models”, 13th
European Symposium on Artificial Neural Networks, 27-29 April 2005, Bruges,
Belgium.

2. “Optimising feedforward artificial neural network architecture”, Engineering
Applications of Artificial Intelligence, submitted for publication.

0 10 20 30 40 50 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

generation

lo
g1

0(
f(

x)
)

Best = 0.20897

1st h idden layer
2nd h idden

layer

3 0

1 0

3 0

3 1

3 5

3 0

3 0

2 4

3 4

3 0

3 0

1 1 0

3 0

1 0 1 6

3 2

3 0

3 0

3 0

1 0

7 4

1 9 0

1 0

3 0

3 0

1 9 0

